
FIBER BRAGG GRATING CHARACTERIZATION BY 
OPTICAL LOW COHERENCE REFLECTOMETRY AND 

SENSING APPLICATIONS 
 
 
 
 

THÈSE N° 2726 (2003) 
 
 

PRÉSENTÉE AU DÉPARTEMENT DE MICROTECHNIQUE 
 
 

ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE 
 

POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES 
 
 
 

Par 
 
 
 

Philippe Giaccari 
Ingénieur Physicien diplômé de l'Ecole Polytechnique 

Fédérale de Lausanne, Suisse 

de nationalité suisse 

 
 
 
 
 

Jury : 

Prof. R. Salathé, directeur de thèse 

Dr. H. Limberger, rapporteur 

Prof. J. Botsis, rapporteur 

Prof. E. Brinkmeyer, rapporteur 

Prof. Ch. Boisrobert, rapporteur 

Dr. H. Gilgen, rapporteur 

 
 
 
 
 

Lausanne, EFPL 
2003 



 



Abstract 
 
 
This work connects of three domains of fiber optics : 

the fiber Bragg gratings (FBG), the optical low coherence 
reflectometry (OLCR) and the fiber optical sensors (using 
FBGs, the OLCR or a combination of both). 

Fiber Bragg gratings are fiber optic devices characterized 
by permanent and periodic changes of the fiber core 
refractive index, which translates into a narrowband 
spectral reflection. FBGs are widely used nowadays in the 
telecommunications field, for example as reflection filters 
or dispersion compensators. Moreover, their sensitivity to 
temperature and strain make them ideal for sensing 
applications, in particular due to their very small size, their immunity against electromagnetic fields and 
their multiplexing capabilities. 

The major challenge with FBGs is to locally characterize the grating properties, in particular the 
core refractive index distribution along the grating. These data allow correcting imperfections during 
the writing process or to determine the distributions in sensing applications. In this work, we have 
reconstructed the complex coupling coefficient distribution of the grating by combining the OLCR 
technique and a reconstruction technique called "layer-peeling". A novel design for the OLCR has 
been proposed and realized. This instrument measures precisely the amplitude and phase of the 
complex fiber Bragg grating impulse response with micrometer resolution and a noise level below 
−120 dB. Using the layer-peeling method, the FBG complex coupling coefficient can be retrieved with 
a 20 µm resolution and an error of less than 5% (this value is obtained by comparing the 
reconstructions from both sides of the grating). 

Many studies have been conducted on axial strains in various samples and various experimental 
conditions. The most promising result concerns the study of non-homogeneous strain fields with the 
reconstruction technique that combines the OLCR and the "layer-peeling". The study of transversal 
strain field has also been conducted with FBGs written in birefringent fibers. A non-linear behavior 
has been observed and explained with the rotation of the fiber eigen axis. An important sensitivity 
anisotropy for different angles has been observed, but not fully explained. 

The influence of humidity and temperature on a polyimide coated FBG was also investigated. The 
sensitivities were measured as a function of the coating thickness. From this analysis a novel concept 
for an intrinsic relative humidity sensor using polyimide-recoated fiber Bragg gratings has been 
proposed. Tests in a controlled environment indicate that the sensor has a linear, reversible and 
accurate response behavior between 10 and 90 %RH and between 13 and 60 °C. 

The last but not least, a new fiber optic sub-nanometric scale vibrometer based on the OLCR 
technique has been developed. This sensor allows for the control of a fiber SNOM (Scanning Near-
field Optical Microscopy) tip oscillations in the air and in water. A very good accuracy is achieved with 
a noise level around 1 pm. The compactness and the easiness to use (auto-calibration and stability) of 
this sensor open up new measurement fields for the SNOM technique as, for example, with biological 
samples in liquids. 



Résumé 
 
 

Ce travail est la convergence de trois domaines des 
fibres optiques : les réseaux de Bragg dans les fibres 
optiques (FBG pour Fiber Bragg Gratings), la 
réflectométrie optique à basse cohérence (OLCR pour 
Optical Low Coherence Reflectometry) et enfin les 
senseurs à fibre optique (utilisant des FBGs, l'OLCR ou la 
combinaison des deux). 

Les réseaux de Bragg dans les fibres optiques sont des 
changements permanents et périodiques de l'indice de 
réfraction du cœur de la fibre, qui réfléchissent une faible 
largeur spectrale. Les FBGs sont couramment utilisés dans 

le domaine des télécommunications, par exemple comme filtres en réflexion ou comme compensateurs 
de dispersion. Leur sensibilité aux variations de température et aux contraintes en font des éléments de 
premier choix pour diverses applications senseur, en particulier grâce à leur très petite taille, leur 
immunité aux champs électromagnétiques et enfin les multiples possibilités de multiplexage. 

Le défi majeur dans l'utilisation des FBGs consiste à caractériser localement les propriétés du 
réseau, en particulier la distribution de l'indice de réfraction du cœur de la fibre le long du réseau. Une 
telle connaissance permet de corriger certaines imperfections lors de l'inscription du FBG ou de 
déterminer des distributions dans les applications senseur. Dans ce travail, nous sommes parvenus à 
reconstruire la distribution du coefficient de couplage complexe d'un réseau en combinant les mesures 
OLCR avec une méthode de reconstruction appelée "layer-peeling". Un design novateur d'OLCR a été 
proposé et réalisé. Cet instrument mesure précisément l'amplitude et la phase de la réponse 
impulsionnelle complexe du FBG avec une résolution micrométrique et un niveau de bruit inférieur à 
−120 dB. En appliquant la méthode de "layer-peeling", le coefficient de couplage complexe du réseau 
peut être retrouvé avec une résolution de 20 µm et une erreur inférieure à 5 % (cette valeur est obtenue 
par comparaison entre les reconstructions obtenues depuis les deux côtés du réseau). 

De nombreuses études ont été menées sur les contraintes axiales dans différents échantillons et 
différentes conditions expérimentales. Le résultat le plus prometteur concerne l'étude de champs de 
contraintes non-homogènes grâce à la technique de reconstruction discutée précédemment qui 
combine l'OLCR et le "layer-peeling". L'étude de champs de contraintes transversales a également été 
conduite grâce à des FBGs gravés dans des fibres biréfringentes. Un comportement non linéaire est 
observé et expliqué par la rotation des axes propres de la fibre. Une importante anisotropie dans la 
sensibilité pour différents angles est également observée mais celle-ci n'a pu être totalement expliquée. 

L'influence de l'humidité et de la température sur les réseaux de Bragg avec une gaine de protection 
en polyimide est étudiée. Les sensibilités ont également été mesurées en fonction de l'épaisseur de la 
gaine. A partir de cette analyse, un nouveau concept de capteur d'humidité relative est proposé basé sur 
des FBGs regainés avec du polyimide. Des tests en chambre climatique montrent que le senseur est 
linéaire, réversible et possède une réponse précise entre 10 et 90 %RH et entre 13 et 60 °C.  

Pour terminer, un nouveau vibromètre sub-nanométrique à fibre optique a été développé, basé sur 
la technologie OLCR. Ce senseur permet le contrôle des oscillations d'une pointe SNOM dans l'air et 
dans l'eau (SNOM : Scanning Near-field Optical Microscopie ou Microscopie à balayage en champ 
proche). Une très bonne précision est obtenue avec un niveau de bruit autour de 1 pm. La compacité 
et la facilité d'utilisation (auto-calibration et stabilité) de ce capteur ouvrent de nouveaux domaines de 
mesures à la technique SNOM comme par exemple la mesure d'échantillons biologiques dans les 
liquides. 
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Chapter 1 
 

Introduction 
 
 
 
 

1.1 State of the art 
1.1.1 Fiber Bragg gratings 
In 1978, Hill et al. reported the first formation of photoinduced gratings in germanosilicate optical 

fibers with an argon-ion laser light propagating inside the fiber core [1-1]. However, this discovery 
remained a lab curiosity since the inscription process only permitted the fabrication of gratings at the 
writing laser wavelength, and then these gratings fade away when used. A decade later, Meltz et al. 
introduced the side-writing interferometric technique, where the Bragg wavelength is independent 
from the writing laser wavelength [1-2]. This technique allows permanent Bragg gratings to be directly 
written into the fiber core using a holographic interferometer illuminated by a coherent ultraviolet light 
source. The grating profile can be completely tailored varying the refractive index modulation 
amplitude (apodization), the pitch period or the average refractive index (chirp) and the tilt (blaze). 

Fiber Bragg gratings (FBG) have become a key component for optical fiber telecommunications as 
wavelength-division multiplexing devices, fiber laser reflectors, gain flattening devices and dispersion 
compensation element [1-3], and for sensing applications as temperature, strain, pressure, ultrasound, 
acceleration, high magnetic field and force, chemical elements [1-4, 1-5]. Temperature and strain 
effects are not independent and only one parameter can be determined from a single grating. In the 
general case, there are three strain components (one in the axial direction and two in the transverse 
plane) and the temperature. In a lot of situations the transverse strains are neglected and the 
temperature is constant so that a single grating can monitor the axial strain average in the grating 
region. A quasi-distributed mapping of strain (or temperature when the strain is constant) is achieved 
by multiplexing several grating in the wavelength, time or spatial domains or by a combination of these 
techniques [1-6]. The length of the gratings that can be produced ranges from 100 µm to several 
meters. Long gratings open new perspectives for distributed sensing and dispersion compensation, but 
in this case the local characterization of the grating parameters is required. 

1.1.2 Local characterization of fiber Bragg gratings 
An important topic of research about FBGs concerns the retrieval of the local grating parameters 

along the fiber axis, namely the refractive index distribution in the fiber core. Currently, two main 
directions are followed to spatially characterize a grating : side measurement techniques and 
mathematical reconstruction methods. 

In the side measurement techniques, the refractive index modulation amplitude, average refractive 
index or grating period can directly be extracted from the diffraction measurement of a laser beam that 
crosses the grating in a direction orthogonal to the fiber axis [1-7 to 1-9]. Refractive index modulation 
amplitude as low as 10−5 can be detected with a spatial resolution of 10 µm [1-8]. 

In the mathematical reconstructions methods, the distributed grating parameters are reconstructed 
from the spectral or impulse responses. The methods that are limited to amplitude or phase 
information solely are not interesting in arbitrary FBG characterization as they have strong 
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requirements, for example monotonic varying chirp functions [1-10 to 1-12]. For week gratings, the 
complex coupling coefficient of the grating is proportional to the complex impulse response that can 
be directly measured or obtained by the Fourier transform of the complex spectral response [1-10, 
1-13]. For stronger gratings, a backscattering technique is necessary [1-14, 1-15]. Some methods use an 
iterative process where at each step a theoretical grating profile and his reflection or phase spectrum 
are generated and compared with a measured spectrum [1-16 to 1-18]. 

The side measurement techniques are not suitable for sensing applications where the FBG is 
embedded in other materials, for example composite devices. For this reason, we have focused on the 
mathematical reconstruction methods. The most performing mathematical methods, based on back-
scattering techniques, require a complex spectral or impulse response of the grating.  

1.1.3 Optical low coherence reflectometry 
An efficient way to measure the complex impulse response of a fiber Bragg grating is based on its 

analysis with an optical low coherence reflectometer (OLCR). The OLCR technique was first used to 
characterize single mode fibers in the late 80s [1-19 to 1-22]. An OLCR uses a broadband source 
coupled to an all-fiber Michelson interferometer. The reference arm contains a broadband mirror, 
whereas the interrogation arm contains the device under test. The portion of the test arm that should 
be analyzed is selected by balancing its optical path length with that of the reference arm and can be 
defined with a micrometer precision [1-23]. The complex OLCR measurement of a FBG corresponds 
to the convolution between the complex impulse response of the grating and the degree of coherence 
of the light source. The degree of coherence of a Gaussian light source is also a Gaussian function, for 
which the time bandwidth corresponds to the light coherence time (inversely proportional to the 
spectral bandwidth of the light source). 

The OLCR technique has been used to find the position, the length and the coupling coefficient of 
homogenous Bragg gratings [1-23, 1-24], to demultiplex several gratings in the space domain [1-25] and 
to measure the complex spectral response of FBGs [1-26 to 1-28]. The most promising aspect of 
OLCR is the possibility to retrieve the spatial information along the grating for distributed 
measurements [1-29]. 

1.2 Motivation and thesis outline 
Recently, a very efficient backscattering technique called layer-peeling has been applied to the FBG 

domain for designing new kinds of gratings that exhibit special features, for example zero dispersion 
properties [1-30, 1-31]. The layer-peeling method is based on the causality principle and therefore 
strongly depends to the FBG impulse response. This indicates that the OLCR measurements and the 
layer-peeling reconstruction method form a promising pair to locally characterize FBGs. 

In this work, a new OLCR interferometer has been conceived and realized to accurately measure 
the complex impulse response of a FBG (amplitude and phase). The reconstruction of different types 
of FBGs has been performed using the layer-peeling method. The local characterization of an axial 
strain field has also been determined by the combination of a FBG gauge, OLCR measurement and 
layer-peeling. 

Other sensing applications have been studied, including transversal strain measurement (FBG 
gauges written in polarization maintaining fibers), humidity and temperature measurements (polyimide 
coated FBG gauges) as well as vibration amplitude measurements (OLCR interferometer technique). 

Chapter 2 presents the fundamentals of fiber Bragg gratings : definition and properties,  fabrication 
and characterization methods used in this work. A new writing set-up is presented that allows the 
writing of FBGs with different Bragg wavelengths using the same phase mask. 

Chapter 3 describes the theoretical simulations of the spectral response using the T-matrix method, 
and the theoretical reconstructions of the grating distributions from the grating complex spectral 
response using the layer-peeling method. Several simulations have been made to study the important 
parameters concerned in the reconstruction process. An evolution of the T-matrix and the layer-
peeling algorithm is proposed, which takes account propagation losses in the grating. 

Chapter 4 focuses on the OLCR fundamentals, the development of the new OLCR set-up and the 
experimental reconstruction of several homogeneous and non-homogeneous FBGs. 
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Chapter 5 presents the combined use of FBGs and the reconstruction method (OLCR & layer-
peeling) for distributed axial strain field characterization; the behavior of FBGs subjected to transversal 
strain fields is also studied for gratings written in low-birefringent or in polarization maintaining fibers. 

Chapter 6 resumes the analysis conducted on the sensitivity of polyimide coated FBGs to 
temperature or relative humidity changes. 

Chapter 7 describes the vibration amplitude sensor developed for the control of SNOM tips 
(Scanning Near-field Optical Microscopy). 
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Chapter 2 
 

Fiber Bragg Gratings 
 
 
 
 
 

The main principles of optical fibers and fiber Bragg gratings (FBG) are described in this chapter. 
The FBG fabrication and optical fiber photosensitivity characterization are also discussed. Finally, the 
characterization methods for FBGs and the gratings sensitivity to temperature and strain are presented. 

2.1 Optical fiber 
2.1.1 Optical fiber principle 
An optical fiber consists of an inner cylinder with a diameter of a few micrometers (core) 

surrounded by an outer cylindrical layer of smaller refractive index (cladding), as seen in Fig. 2-1. The 
refractive index difference ensures total reflections at the core-cladding interface, allowing for 
propagation of the light along the fiber. The maximum entrance angle θ (Fig. 2-1) corresponds to an 
internal reflection angle at the critical angle θc, and it is found from the law of refraction (Snell's Law) 

 
Fig. 2-1 Fiber geometry for total reflection at the critical angle 

( ) ( ) ( )0 1 1sin sin / 2 cosc cn n nθ π θ θ= − =  

( ) ( )1 2 2sin sin / 2cn n nθ π= =  
(2-1) 

The numerical aperture NA of the fiber is defined as n0⋅sin(θ), and it can be found from equations 
(2-1), and the following relation is obtained : 

( ) 2 2
1 2sinNA n nθ= = −  (2-2) 

where n1 and n2 are the refractive index of the core and the cladding, respectively. The 
electromagnetic field propagation in waveguides was solved at the beginning of the 20th century from 
Maxwell’s equations and it was shown that a finite number of modes can propagate along the fiber 
(Appendix A). Waveguides as optical fibers also support radiative modes, which form a continuum and 
correspond to unguided refracted rays. All the guided modes have their own propagation velocity and 
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their specific field distribution. Moreover, the guided modes present a cutoff wavelength, apart from 
the lowest order mode. 

The entire fiber can also guide modes with the propagation conditions at the cladding-air interface. 
Such modes are called cladding modes. Energy transfer is possible between the core modes and the 
cladding modes. 

Pure silica glasses are mainly used to fabricate optical fibers. Adding dopants like germanium, 
nitrogen, and phosphorus in the fiber core creates the refractive index difference between the core and 
the claddings and modifies the core photosensitivity. Co-dopants like tin and boron are used to modify 
the fiber numerical aperture and the photosensitivity. Optically active fibers are obtained by integration 
of rare earth dopants. Sufficient index difference and fairly close thermal-expansion coefficients have 
to be guaranteed. Standard telecom fibers are made of pure silica claddings and about 3% wt. 
germanium doped silica core. Other glass materials are sometimes used as borosilicate (for example in 
polarization maintaining fibers, as shown in section 2.1.2) and fluoride glasses. 

2.1.2 Types of optical fibers 
The optical fibers can be classified as a function of the number of modes supported at a given 

wavelength : 
− Single-mode fiber : only the fundamental mode is possible, with two orthogonal 

polarizations admitted 
− Multi-mode fiber : several modes are supported by the waveguide, each one exhibiting a 

different field distribution and propagation constant 
Standard single-mode fibers are of step-index type, that is, there is a discontinuity of refractive 

index between the core and the cladding. For single mode operation in the range 1300 − 1550 nm, the 
fiber core has a diameter between 4 and 9 µm (the fiber cladding diameter is 125 µm for fibers used in 
telecommunications). Multi-mode fibers are sometimes of step-index type but often they are of graded 
index type. In graded index fibers, the refractive index varies continuously between the core and the 
cladding in order to compensate the modal dispersion in multimode fibers (the shortest path has the 
highest index, and therefore the propagation velocity will be slower for the light following this path 
than for the zigzag rays propagating in lower-index regions). 

            
Fig. 2-2 Polarization maintaining fiber of bow-tie type (left) and main regions 

(right) 

Single-mode fibers with a cylindrical symmetry can be considered as two modes structures, since 
two orthogonal polarizations are permitted. Both modes are degenerated. Small perturbations in the 
fiber geometry or material properties (structural or induced by external conditions) lead to 
birefringence that changes the velocity of both polarization modes and removes the degenerency. Due 
to nearly identical propagation constants, important cross-talk between the modes induces non 
negligible polarization mode dispersion (PMD). To avoid this dispersion, polarization-maintaining 
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(PM) fibers are used where both modes have well separated propagation constants. The separation is 
obtained by modifying the fiber geometry (elliptical core) or by inducing a refractive index anisotropy 
in the transverse plane of the fiber (birefringence induced by stress applying regions inside the 
cladding). For example in this work, we have used PM fibers of the bow-tie type. A micrograph of the 
cross-section of this fiber is presented in the left part of Fig. 2-2. The schematic drawing in the right 
picture fits precisely the left micrograph. 

The bow-tie region is made of borosilicate. The silica and the borosicate glasses have different 
thermal expansion coefficient and then, residual stresses are created into the fiber perform during the 
cooling-down processus. Typical effective refractive index differences of 4⋅10-4 are observed for our 
bow tie PM fiber. We observe in Fig. 2-2 that the core geometry is also modified, as it appears 
elliptical. 

2.1.3 Fiber Parameters 

a) Effective refractive index 
We consider a single-mode, step index optical fiber and we define a relative index difference ∆ : 

1 2

2

n n
n
−

∆ =  (2-3) 

In practice, for step index fibers, the relative index difference ∆ is smaller than 1 % and weak 
guidance is admitted. We define a dimensionless parameter V called the normalized frequency 

2 2
1 2 2

2 2aV n n aknπ
λ

= − ≅ ∆  (2-4) 

where a is the core radius, λ the wavelength and k = 2π/λ. The V parameter indicates how far away 
from the cutoff (condition where the mode is no more guided) a given mode is. The closer to the 
cutoff the mode is, the deeper the evanescent field extends in the cladding. A single-mode-operating 
condition is possible when V < 2.405. The propagation constant β in the fiber corresponds to the 
solutions of the mode equations and then an effective refractive index of the guided mode neff can be 
defined as 

/effn kβ=  (2-5) 

A good approximation of the effective refractive index neff is found in Appendix A and it can be 
expressed in terms of the V parameter, the wavelength and the fiber parameters (n1, n2 and a) 

( )
2

22 2
2 1.1428 0.9960

2effn n V
a

λ
π

 ≅ + ⋅ − 
 

 (2-6) 

As the relative refractive index difference is small, the longitudinal components can be almost 
neglected and the mode is considered transversely linearly polarized (LP01 mode). We also define a 
cutoff wavelength under which another mode appear 

/ 2.405c Vλ λ=  (2-7) 

b) Group refractive index 
The group delay τ that characterize the propagation time per unit length is well approximated by 

(Appendix A) 

( )( )( )221 1 1.3060 0.9960 /d d N V
d c dk c

β βτ
ω

= = = + ∆ ⋅ −  (2-8) 

where N2 = d(kn2)/dk is the group index of refraction of the cladding. For silica in the wavelength 
range 1300−1500 nm, the relative difference between N2 and n2 is less than 1.5 % [2-1]. The group 
delay is the inversely proportional to the group velocity and the group refractive index is defined as 
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g
g

cn c
v

τ= = ⋅  (2-9) 

c) Dispersion 
There are two differences between the light traveling in vacuum and along an optical fiber : 

− Time delay : expresses the propagation delay per unit length 
− Dispersion : expresses the time delay variation with the wavelength 

Dispersion effects are a problem in telecommunication transmission since they broaden the pulse 
width. Four kind of dispersion can be identified : 

− Material dispersion : the refractive index of the cladding and core are frequency 
dependent; for fused silica, the dispersion is negative at wavelength below 1300 nm and 
positive above 1300 nm 

− Waveguide dispersion : equation (2-6) takes into account that the propagation constant 
for a given mode is wavelength dependent in a non linear manner, leading to another 
dispersion component 

− Modal dispersion : each propagation mode has its own propagation parameters and then 
different modes travel at different velocities for the same wavelength 

− Polarization mode dispersion : the birefringence in fibers modifies the propagation 
constant 

For the single-mode fibers used in our experiments, the modal dispersion was negligible. Due to 
the sign change of the material dispersion around 1300 nm a zero-dispersion propagation is possible 
when the waveguide and material dispersion compensate each other. For step-index fibers, the zero-
dispersion wavelength is close to 1300 nm. The tailoring of the waveguide structure (core profiling or 
segmenting) modifies the waveguide dispersion and then the zero-dispersion condition can be shifted 
(for example at 1550 nm) [2-2]. 

2.2 Fiber Bragg grating 
2.2.1 Bragg reflections 
In the study of crystals, it is known that X rays are reflected at well-defined directions due to the 

periodic arrangement of the atoms and these reflections are described by the Bragg equation. In the 
same way but at larger wavelengths, a periodic refractive index variation in the core of an optical fiber 
will exhibit specific reflections at the Bragg condition with an angle π (i.e. back-reflection) 

2b effn mλ = ⋅ ⋅ Λ ⋅  (2-10) 

where λb is the peak reflection amplitude wavelength, neff the effective refractive index of the guided 
mode, Λ the grating period (Fig. 2-3) and m = 1, 2 , 3, … is the Bragg reflection order. For this reason 
these structures are called fiber Bragg gratings (FBG). FBGs in silica-based optical fiber (with 
approximate effective refractive index of 1.45) have a grating period between 450 and 500 nm for the 
lowest Bragg reflection order in the 1300−1500 nm range. Higher orders of reflection are possible but 
not considered here. Fig. 2-3 shows that a broadband light around the Bragg wavelength launched in 
the fiber (in(λ)) is partly back-reflected (r(λ)) with a resonance peak at the Bragg wavelength; the 
remaining light is instead transmitted (t(λ)). In the coupled-mode formalism [2-2], the FBG can be 
seen as a coupling perturbation between the forward and backward waves traveling in the fiber 
(Appendix C). It should be noted that a small part of the back-reflected light is also coupled in the 
cladding. For much larger grating periods, tens or hundreds of microns instead of half micron, the 
coupling of energy between the forward propagating core mode and the forward propagating cladding 
modes is possible. Such kind of grating is called long-period grating (LPG). 
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Fig. 2-3 Fiber Bragg grating and spectral effects 

2.2.2 Photosensitivity in fibers 

a) History 
Hill and co-workers (1978, [2-3]) discovered photosensitivity of germanium-doped silica fibers. In 

their experiment, the 488nm laser light coupled into a fiber interfered with the Fresnel reflected beam 
and thus formed a weak standing-wave intensity pattern and a correspondent permanent index change. 
Lam and Garside (1981,[2-4]) showed that the magnitude of the photoinduced refractive index change 
depended on the square of the writing power, suggesting a two-photon process as the possible 
mechanism of refractive-index change. In 1989, Meltz et al. ([2-5]) demonstrated that a strong index of 
refraction change occurred when a germanium-doped fiber was exposed to UV light close to the 
absorption peak of a germania-related defect at a wavelength range of 240-250nm (single-photon 
process). 

b) Origin of the photosentivity 
The mechanisms that create the refractive index change are not fully understood. Several models 

have been proposed. The recurrent element in these theories is that the germanium-oxygen vacancy 
defects, Ge-Si or Ge-Ge (the so-called “wrong bonds”) are responsible for the photoinduced index 
changes. The main models for the photosensivities of optical fibers are : 

− The color center model [2-6, 2-7] : the breaking of the GeO defect by the UV light 
results in a GeE' center and the released electron is free to move within the glass matrix; 
when this electron is trapped, an additional absorption center appear in the glass and 
due to the Kramers-Kronig relation, a refractive index change is observed 

− The dipole model [2-8, 2-9] : the photo-excitation  of defects forms built-in periodic 
space-charge electric fields 

− The stress-relief model [2-10, 2-11] : a refractive index change arises from the alleviation 
of built-in thermo-elastic stresses in the core of the fiber that was created during the 
fiber fabrication 

− The compaction model [2-12, 2-13] : the laser irradiation induces density variations of 
the glass that also change the refractive index 

c) Enhanced photosensitivity in silica optical fibers 

i. Dopant concentration increase 
The photosensitivity is highly increased by a high concentration of germanium. Nevertheless, this 

kind of fiber exhibits high NA, incompatible with telecommunication devices. Then, fibers containing 
boron have an enhanced photosensitivity. The maximal refractive index changes are higher and 
achieved faster than for any other kind of fiber. Boron codoping increases the photosensitivity of the 
fiber by allowing photoinduced stress relaxation. Another benefit of boron co-doping is the 
compatible NA with standard telecommunication fibers. Other co-doping as tin has been reported. 
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ii. Hydrogen loading of the fiber 
Hydrogen loading is carried out by diffusing hydrogen molecules into the optical fiber at high 

pressures. The reaction of hydrogen molecules at the Ge sites produces germanium-oxygen deficiency 
centers when exposed to UV light [2-14]. This is not a permanent effect, and as the hydrogen diffuses 
out, the photosensibility decreases. 

iii. Irradiation with a UV laser at 193 nm 
Bragg gratings fabricated silica fibers using 193nm UV light have stronger reflectivity than gratings 

inscribed with 248nm under similar excitation conditions [2-15]. 

2.2.3 FBG fabrication by the phase mask technique 
A phase mask is a quartz plate on which a periodic corrugation has been engraved. The period and 

depth of the mask grating are optimized to maximize the first order of the Bragg reflection for a given 
light wavelength. The superposition of the ± 1 order generates an interference pattern with a period 
that is half the mask period. The interference can only occur if the illumination light source exhibits a 
sufficient coherence length (temporal and spatial). If the fiber is placed in the interference region, a 
FBG with half the phase mask period can be written. Typical values of 40 % energy in each first order 
of diffraction are observed. The remaining zero order (less than 1 % to 5 % of the incident beam) 
reduces the fringe visibility of the interference pattern and induces a constant refractive index change. 
The realized writing set-up is presented in Fig. 2-4. 

 
Fig. 2-4 FBG writing set-up with the phase mask technique 

The maximal photosensitivity depends partly on the laser fluence and for this reason the laser beam 
height is reduced by a factor three. The beam reducer system is composed of the convex and concave 
cylindrical lens that can be seen in the side view of Fig. 2-4. The beam is preferably kept parallel to 
protect the phase mask from beam focusing that could damage the grating, but some experiments have 
required focalizing the beam to reach the maximal fluence on the fiber. 

The illumination source is a pulsed excimer laser operating at 193 nm (ArF) with energy ranging 
from a few millijoules to 240 mJ per pulse. In addition, another cylinder lens can be introduced in the 
system to enlarge the beam width from 6mm to 3cm and thus increasing the possible grating length. 
The laser beam width is limited by a slit limits placed before the phase mask. The phase masks can be 
changed or removed very easily. A CCD video system is used to align the fiber in front of the phase 
mask with respect to the laser beam. The setup shows a good mechanical stability since grating erasure 
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was observed only at high total dose. Without the phase mask, the setup allows homogeneous post-
exposure of the fiber to increase the mean refractive index and permits hence a wavelength fine tuning. 

2.3 FBG properties 
2.3.1 Refractive index profile 
A FBG is completely characterized by its refractive index distribution along the fiber n(z) [2-16]: 

( ) ( ) ( )( ) ( )0 cos 2 /ac dcn z n n z z z n zπ θ− = ∆ ⋅ Λ + + ∆  (2-11) 

where z is the position, n0 the refractive index prior to grating inscription, ∆nac the refractive index 
modulation amplitude, Λ a design grating period, θ the period chirp (slowly varying with z), and ∆ndc 
the average change in refractive index (Fig. 2-5). The refractive index modulation amplitude remains 
sinusoidal until the exposed region reaches the maximal refractive index change. Then, if the UV 
exposure continues, the modulation change from sinusoidal to rectangular. 

 

 
Fig. 2-5 Fiber Bragg grating refractive index 

For gratings approaching the photosensitivity saturation, the modulation shape became rectangular. 

2.3.2 FBG types 

a) Homogeneous FBG 
Homogeneous gratings are characterized by a rectangular function for the modulation amplitude 

envelope ∆nac and the index offset ∆ndc with Λ kept constant (Fig. 2-6 left). The strong index step at 
the input and output of the grating induces important reflections bands, called side-lobes, outside the 
main Bragg peak. This effect can be understood by considering the grating edge as a Fabry-Perot 
structure. 

                 
Fig. 2-6 FBG index profile : homogeneous (left), apodized (right) 

The spectral reflectivity r(λ) = |r(λ)|⋅exp(i⋅φ(λ)) of such a grating has been calculated by the T-
Matrix method that will be extensively explained in section 3.1.4. The results are presented in Fig. 2-7. 
The parameters used for the simulations are : an effective refractive index of 1.45, a maximal refractive 
index modulation of 2⋅10-4, a grating period corresponding to a Bragg condition of λb = 1300 nm and 
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a grating length of 5 mm (a fringe visibility of 1 is assumed). The homogeneous FBG is calculated in 
one layer. We observe in Fig. 2-7 that in the reflection amplitude |r(λ)|, the side-lobes are equally 
placed at both sides of the main Bragg peak resonance. The maximal reflectivity is 97 % and the first 
side-lobes show a reflectivity of 22 %. The delay time dφ(λ)/dω (where ω is the angular frequency) 
tends asymptotically to a value of 24 ps for |λ-λb|>>0. For strong gratings, part of the light is 
coupled in the cladding modes, inducing excess losses. This effect cannot be studied with reflection 
spectra but looking at the transmission light. 

 
Fig. 2-7 FBG reflection intensity in linear scale (top), in dB (middle) and time 
delay (bottom) for an homogeneous FBG (solid line), an apodized FBG (dashed 

line) and a period chirped FBG (dashed-dotted line) 

The amplitude and power reflection coefficients r(ν) and R(ν) = |r(ν)|2, respectively, are given by 
[2-16, 2-17] 
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(2-12) 

where γ2 = |q|2 − δ2,  δ = β − π/Λ, |q| = κ = η⋅π⋅∆nac/λ, Arg(q) = π/2, β = 2πneff/λ and 
neff = n0 + ∆ndc. 

The maximal reflectivity Rmax is given by 

( )2
max tanhR Lκ=  (2-13) 

 The grating bandwidth ∆λBW, defined as the wavelength range between the first zeros apart from 
the Bragg peak is given by 

2

1ac b
BW b

eff ac

n
n n L

λλ λ
 ∆

∆ = +  ∆ 
 (2-14) 
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Depending on the grating parameters, the Bragg reflector can operate as a narrow-band or a 
broadband filter or mirror. 

b) Apodized FBG 
A variation along the fiber in the envelope of the refractive index modulation amplitude, ∆nac, is 

called apodization. The period Λ and the DC refractive index function ∆ndc are considered constant. 
Since the apodization can prevent any discontinuities in the ∆nac profile (Fig. 2-6 right), the Fabry-
Perot effect observed for rectangular gratings is greatly reduced. This can be observed in Fig. 2-7 
where the side-lobes are suppressed by about 30 dB. The simulation has been performed by 
considering a 100-layered grating and a Hann apodization function. The other parameters are the same 
used for the homogeneous grating. The reflectivity at the resonance is reduced to 68 % due to the 
refractive index envelope. The delay time range is reduced by a factor 4.5. 

c) Chirped FBG 
If the period Λ or the DC refractive index ∆ndc changes within the grating, different Bragg 

conditions exist and a larger bandwidth of wavelengths is reflected (at the price of smaller reflectivity). 
Both cases of chirping are presented in Fig. 2-8. The two chirping effects are independent and then 
they can be combined to reduce or enhance the total grating chirp. 

                 
Fig. 2-8 Chirped FBG index profile : period chirp (left), index chirp (right) 

The spectral reflection response of these gratings is also presented in Fig. 2-7. The grating 
parameters are the same as the homogeneous FBG, but the grating is divided in 100 layers for which 
the period function linearly varies from a Bragg condition of 1299.8 to 1300.2 nm. We observe a 
reduction of the maximal reflection to 92 % and an important relative increase of the side-lobes. The 
Fabry-Perot effect is also reduced due to the fact that the both sides of the grating reflects different 
wavelengths. For a larger chirp the reflectivity spectrum becomes much more complicated and not so 
easily predictable. We observe for the delay time a completely different behavior. Singularities appear 
and an anti-symmetric delay time is found. Chirped gratings can be used as dispersion compensators to 
compress temporally broadened pulses, it can also be used (broadband chirped grating) for pump 
rejection and recycling of unabsorbed pump light from an erbium-doped fiber amplifier. 

d) Blazed (or tilted) grating 

 
Fig. 2-9 Blazed fiber Bragg grating 

When the grating planes are not orthogonal to the fiber axis (Fig. 2-9), the grating is called blazed 
or tilted. For a tilt angle θ and a phase mask period of Λg/2, the effective period Λ that determines the 
Bragg condition is given by Λ = Λg/cos(θ). The overall effects are a reduced fringe visibility factor and 
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transfer of a part of the energy to the cladding modes [2-17]. It is important to note that the energy 
coupled in the cladding modes is considered as excess loss. 

The tilt of the grating planes and the strength of the index modulation determines the coupling 
efficiency and the bandwidth of the light that is tapped out. Multiple blazed gratings can be used to 
flatten the gain spectrum of erbium-doped fiber amplifiers. Another application of blazed gratings is in 
mode conversion. 

e) FBG with phase shifts 
Phase shifts in FBG consist of some discontinuities in the functions ∆ndc or θ(z). The fiber grating 

can be designed as a narrow-band transmission filter with the introduction of phase shift across the 
fiber grating whose location and magnitude can be adjusted to design a specific transmission spectrum. 

f) Arbitrary FBG 
An arbitrary FBG can be characterized by any kind of functions ∆nac(z), ∆ndc(z) and Λ(z), and thus 

have simultaneously apodization, period and refractive index chirp, phase shifts and tilt. The design of 
complicated FBG is required when specific spectral responses are expected, for example limited delay 
time over a large wavelength bandwidth. Sometimes the ∆nac, ∆ndc and Λ functions are not completely 
under control, due to fabrication problems or specific grating environment (temperature or strain). 
Arbitrary FBGs are difficult to characterize since three different distributions need to be known to 
fully determine the grating (if we neglect the tilt effects). 

2.3.3 Temperature and strain sensitivity 
Temperature changes induce two effects on the FBG parameters. The thermal elongation of the 

fiber dilatation modifies the grating period Λ and the thermo-optic effects modify the refractive index 
functions (∆nac, ∆ndc). In the same manner, an applied stress on the fiber will lead to a geometric effect 
on the grating period and a refractive index change due to the photoelastic effect. Both effects can 
coexist and the Bragg wavelength shift ∆λb can be expressed as 

2 eff eff
b eff eff

n n
n L n T

L L T T
λ

 ∂ ∂    ∂Λ ∂Λ
∆ = Λ + ∆ + Λ + ∆    ∂ ∂ ∂ ∂    

 (2-15) 

where L represent the grating length and T the temperature. We have assumed that the temperature 
and the strain fields are constant over the grating length. More details on the strains effects are 
presented in Chapter 5 and 6, while thermal effects are presented in Chapter 7. 

The strain field is described with a tensor that derives from the stress tensor. The stress tensor can 
be approximated in many cases by a vector (σx, σy, σz) representing the stresses in the three orthogonal 
directions as indicated in Fig. 2-10 

 
Fig. 2-10 Stress components 

The high sensitivity of FBGs to temperature and axial stress has been widely used for sensing 
applications. Transversal stress measurements are more difficult as the sensitivity is much lower than 
the axial stress sensitivity and the directions x and y are not defined a priori except for gratings written 
in PM fibers. This aspect is presented in Chapter 5. 
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2.4 Experimental results 
2.4.1 FBG fabrication 

a) Standard phase mask technique 
We present in Fig. 2-11 the spectral response of a FBG fabricated in our institute with the standard 

phase mask technique. This spectral response is compared to the simulated response for an 
homogeneous grating of 2.7 mm length and a refractive index modulation is 2.5⋅10−4. The agreement 
between both spectral response is good indicating a nearly homogeneous UV light beam. 

 
Fig. 2-11 FBG written in standard fiber and theoretical calculation 

b) Modified phase technique for Bragg wavelength tuning 

          
Fig. 2-12 FBG writing set-up with the modified phase mask technique 

For given phase mask and fiber, the Bragg wavelength is determined by the effective index of the 
fiber, neff, and the phase mask period ΛM : λB=neffΛM, where the grating period is Λ=ΛM/2. It is 
possible to tune λB to higher wavelengths using post-exposure or to tune λB to lower wavelengths by 
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stretching the fiber during the writing process. To have more flexibility with the same phase mask, an 
optical system including several lenses has been studied. The basic idea was to magnify the image of 
the grating onto the fiber as shown by Fig. 2-12. Compared to the standard writing set-up (top view of 
Fig. 2-4), two cylindrical lenses have been added, a convex one with focal length fx and a concave one 
with focal length fv. 

Using ray optics, we find that the Bragg wavelength change ∆λb, with respect to the Bragg 
wavelength with a parallel beam λb,0, is given by (Appendix B) 

,0b b dλ λ α∆ = ⋅ ⋅  
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where d is the distance between the phase mask and the fiber core, d1 the distance between the lenses 
and d2 the distance between the concave lens and the phase mask. We observe that a Bragg wavelength 
change is obtained even with the fiber touching the phase mask due to the cladding thickness. The 
parallel alignment between the phase mask and the fiber is very important, since the Bragg condition 
strongly changes with d. Misalignment will lead to an important chirp. 

We fabricated several FBGs with this set-up formed by two lenses and the same phase mask. The 
reflection spectrum of six different of such FBGs are presented in Fig. 2-13. We observe a tuning 
range of 10 nm and a small bandwidth change, indicating a good alignment of the fiber in front of the 
grating. The smaller reflectivity of FBG 6 is probably due to a misalignment of the fiber in the laser 
beam (then reducing the total dose). 

  
Fig. 2-13 Reflection spectrum of six FBG’s written with the modified phase 

mask technique 

2.4.2 Spectral characterization 
Spectral amplitude or intensity measurements can be performed in reflection or in transmission. We 

have used a tunable laser or a broadband light source to measure the intensity responses. Fig. 2-14 
shows the measurement set-up based on the tunable laser. The polarized light of the laser is launched 
in one arm of a coupler (eventually goes through a polarization controller to excite in a defined manner 
the polarization modes if a PM fiber is used). The reflected intensity from the grating is collected by 
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the detector DR and the transmitted intensity by the detector DT. It should be noted that the remaining 
spontaneous light of the laser source limits the maximal dynamic range of the measurement (60 dB for 
the tunable laser available during this work). In the second method, the tunable laser is replaced by a 
broadband light source and the detectors by an optical spectrum analyzer or a monochromator. 

 
Fig. 2-14 Reflection and transmission intensity measurement set-up with a 
tunable laser; tunable laser (TL), coupler (CPL), polarization controller 

(POLA), fiber Bragg grating (FBG), detector for reflection intensity (DR) and for 
transmission intensity (DT) 

The time multiplexed OLCR set-up developed for the measurement of the grating impulse 
response has also been used as a spectral measurement system (§4.3.7). In this case, the reflection 
amplitude (not the intensity) and the reflection phase are collected. We note that the Fourier transform 
of an OLCR measurement gives also the complex reflection amplitude. 

2.4.3 Bragg wavelength determination 
For sensing applications when a homogeneous FBG is placed in a homogeneous temperature or 

strain field, the important information is the Bragg wavelength shift. We have used two different 
methods to extract this wavelength shift depending on the spectral resolution. 

For small resolution measurements, the Bragg wavelength is defined as the zero crossing point of 
the linear fit of the reflectivity slope between the maximal and minimal values (corresponding to 
inflexion points). This can be seen in Fig. 2-15 where the spectral response has been simulated for a 
homogeneous grating (10 mm long and ∆nac = 5⋅10-5) with 2 % of noise and a resolution of 4 pm. 
Apart from the maximal reflectivity peak, we identify the inflexion points (slope maximum and 
minimum). The zero crossing point is indicated with an arrow. 

 
Fig. 2-15 Bragg wavelength measurement for low spectral resolution measurement; 

top : theoretical reflectivity intensity (solid line) and noisy data (dots); bottom : 
discrete slope (circles) and linear fit between the maximum and the minimum 

(solid line) 
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For a high spectral resolution measurement, this method is no more valid as the discrete slope is 
dominated by the noise and in this case the second method presented hereafter is recommended (or a 
re-sampling at smaller resolution needs to be performed). 

The second technique used to measure the wavelength shift in an experiment is to use the mass 
center of the reflectivity curve 

( )m m
m

b
m

m

R λ λ
λ

λ

⋅
=

∑
∑

 (2-17) 

where λm and R are a measured wavelength and reflection intensity, respectively. This method requires 
a high spectral resolution (at least 200 measured points in the Bragg reflectivity peak). This method is 
also interesting for gratings subjected to non-homogeneous environmental conditions, for example a 
non-homogeneous strain field, as the Bragg wavelength at the mass center is related to the average 
Bragg condition. For FBGs with high spectral bandwidths, the mass center calculation should be 
performed in the frequency domain where the spectral density is proportional to the energy.  
 

2.4.4 Characterization of the photosensitivity 

a) Method based on the variation of the refractive index modulation amplitude 
In this method, the measurement of a FBG reflectivity at different irradiation values gives the 

amplitude ∆n of the refractive index modulation through the following equations 

( )2tanR Lκ= ⋅  

b

nπ ηκ
λ

⋅ ∆ ⋅
=  

(2-18) 

where R is the reflectivity, κ the coupling coefficient, L the length of the grating, η the overlap integral 
between the LP01 mode and the fiber core, and λb the Bragg wavelength. The above equations are only 
useful for gratings that are not too strong. For this reason, very small grating are used for this 
measurement (around 0.2 mm). If the fringe visibility is 100 %, the mean index is equal to the 
amplitude. In case of a smaller fringe visibility, the mean index has to be measured independently. 

 
Fig. 2-16 Photosensitivity of a standard fiber (Inset: FBG transmission spectra 

for different number of total pulses). 
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The photosensitivity of a standard fiber (Spectran SMT-A1310H) has been determined with this 
method. The fiber was hydrogen loaded (7 days at 150 bars) and irradiations were performed at 
193 nm. Different transmission spectra of the FBG (Fig. 2-16 inset) are used to retrieve the refractive 
index modulation amplitude ∆n as a function of the total dose (proportional to the number of pulses). 
Figure Fig. 2-16 shows four of these transmission spectra and the photosensitivity curve. The maximal 
refractive index modulation amplitude is 2⋅10-3. 

b) Method based on the variation of the mean effective refractive index 
To measure the mean index, a weak FBG (as small as possible) is used. The exposure of the grating 

region with a homogeneous laser beam increases the refractive index of the core and thus the mean 
effective refractive index 

effn nη∆ = ∆ , which can be measured with the shift of the Bragg wavelength λb 

/b b eff effn nλ λ∆ = ⋅∆  (2-19) 

The photosensitivity of the polarization maintaining fiber (Fibercore  HB1250P) has been measured 
with this method. The fiber is also hydrogen loaded. Different transmission spectra of the FBG are 
used to retrieve the mean effective refractive index 

effn∆  as a function of the total dose (proportional 
to the number of pulses). Fig. 2-17 shows the photosensitivity curve. The photosensitivity of the 
polarization maintaining fiber saturates at 7⋅10-3. 

 
Fig. 2-17 Photosensitivity of the polarization maintaining fiber Fibercore 

HB1250P. 

2.5 Summary 
We have described the main parameters which describe a fiber Bragg grating, from the fiber itself 

to the different aspects of the FBGs. The important equation is the refractive index distribution (2-11) 
where we see that the grating is described with three independent functions, the refractive index 
modulation amplitude, the average effective refractive index change and the grating period. We have 
seen that variations of these distributions can lead to various spectral and impulse responses. The high 
sensitivity of FBGs to temperature and stress fields has also been presented. We will see in Chapter 5 
and 6 different sensing applications from point axial or transverse stress sensors to distributed axial 
stress sensor and finally temperature and humidity sensors (that profit from the swelling properties of 
the coating that induce strain on the FBG). 
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Chapter 3 
 

FBG simulation and reconstruction 
 
 
 
 
 

Fig. 3-1 presents a synthetic view of the subjects treated in this chapter. A FBG can be described in 
three domains : space (z), frequency (ν) and time (τ). The methods used to go from one representation 
to the other are also indicated. The T-matrix method allows to calculate the complex spectral response 
r(ν) when the complex coupling coefficient distribution q(z) is known [3-1]. The complex coupling 
coefficient amplitude is proportional to the refractive index modulation amplitude ∆nac(z), while its 
phase represents the chirp function that mixes the average refractive index ∆ndc(z) and the period Λ(z). 
Inversely, q(z) can be retrieved from r(ν) by the layer-peeling method [3-2]. This method is based on 
the coupled-mode formalism [3-3]. The impulse response h(τ) can be obtained from the spectral 
response by Fourier transform. 

 
Fig. 3-1 Different paths between the FBG representations 

This chapter presents the T-matrix and the layer-peeling methods. The T-matrix is used to calculate 
the spectral and impulse response of homogeneous and non-homogenous gratings. From these 
responses, the layer-peeling method is studied and the optimal reconstruction parameters are 
presented. We also analyze the reconstruction limits observed for gratings with nearly 100 % 
reflectivity. 

The T-matrix and the layer-peeling methods are only defined for lossless FBGs and for this reason 
we have adapted the two methods to takes account of loss effects. 
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3.1 FBG spectral response simulation in the coupled-
mode formalism 

3.1.1 Coupled-mode equations 
The fiber is assumed lossless, single mode and weakly guiding (small refractive index difference 

between the cladding and the fiber core). The electromagnetic field is supposed transverse to the fiber 
axis z, with the polarization state that is conserved along the propagation (e.g. x-polarized). Moreover, 
the refractive index modulation of the grating is assumed to be homogeneous and restricted to the 
fiber core. 

The core refractive index perturbation n(z) is defined as (Chapter 2, §2.3.1) 

( ) ( ) ( ) ( )0
2cosac dc
d

n z n n z z z n zπ θ
 

= + ∆ + + ∆ Λ 
 (3-1) 

where n0 is the refractive index of the non-perturbed fiber core, ∆nac and ∆ndc are the “ac” and “dc” 
index change amplitudes, respectively, and Λd is the design period, which is chosen in order to have a 
slowly varying period phase function θ(z). The forward and backward propagating field envelopes (u 
and v, respectively) are mutually coupled by the coupled wave equation for weak coupling coefficients 
(see Appendix C for full description) 

( ) ( ),du z
i u q z v

dz
δ

δ= + +  

( ) ( )*,dv z
i v q z u

dz
δ

δ= − +  
(3-2) 

where δ = β−π/Λd is called the wavenumber detuning (β = kneff is the propagation constant). The 
function q(z) is called the coupling coefficient and its amplitude and phase are defined as 

( ) ( )acn z
q z

ηπ
λ

⋅∆
=  

( )( ) ( ) ( )
0

2 ' '
2

z

dcArg q z z k n z dzπ θ η= + − ∆∫  
(3-3) 

where η is the fraction of the modal power contained in the fiber core. 

3.1.2 Analytic solution for homogeneous FBGs 
A homogeneous FBG has constant values for ∆nac, ∆ndc and Λ in the range 0 ≤ z ≤ L. In this case, 

the coupled mode equations can be solved analytically by differentiating equations (3-2) and 
substituting the first derivatives by the equations (3-2); for example for u(z,δ), we have 

( ) ( )
2

2 2
2

,d u z
q u

dz
δ

δ= −  (3-4) 

The same kind of equation is obtained for v(z,δ) [3-2]. Using the appropriate boundary conditions, 
the reflection amplitude r(δ) and the transmission amplitude t(δ) are found to be 

( ) ( )
( ) ( )

* sinh
cosh sinh

q L
r

L i L
γ

δ
γ γ δ γ

−
=

−
 

( ) ( ) ( )cosh sinh
t

L i L
γδ

γ γ δ γ
=

−
 

(3-5) 
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where γ2 = |q|2 − δ2. A meaningful expression of q is obtained for a design period that corresponds 
exactly to the physical period Λ and for an effective refractive index set to n0+∆ndc (and then the 
integral term in equation (3-3) vanishes). In this case, the coupling coefficient phase factor reduces to 
π/2 and then q = i|q| = i⋅η⋅π⋅∆nac/λ. 

3.1.3 Numerical solution of the Riccati equation for non-
homogeneous FBGs 

We define the function r(z,d) = v(z,d)/u(z,d) [3-2] and the Riccati equation can be found by 
differentiating r with respect to z and substituting equations (3-2) 

( ) ( ) ( )2 *,
2

dr z
q z r i r q z

dz
δ

δ= − − +  (3-6) 

Using the boundary condition r(L,δ) = 0, the equation can be numerically solved from the end of 
the grating backward to z = 0 using a Runge-Kutta method. The reflection coefficient amplitude is 
found to be r(δ) = r(0,δ). The calculation needs a larger number of steps in the Runge-Kutta routine to 
converge than for the T-matrix method presented hereafter. 

3.1.4 T-matrix method 
In the T-matrix method [3-2 to 3-4], the grating is divided in N sections of width ∆j (j = 1, …, N), 

where the parameters ∆nac, ∆ndc and Λ are constant. The grating is then defined by N sections with 
coupling coefficients qj and physical thickness ∆j (Fig. 3-2). 

 
Fig. 3-2 FBG Slicing in sub-sections for the T-matrix method 

The knowledge of the fields uj and vj at the entrance of section j allows to find the fields uj+1 and 
vj+1 at the layer output. This relation can be expressed in the form of a transfer matrix relation 

1

1

j j
j

j j

u u
T

v v
−

−

   
=   

   
 (3-7) 

where 

( ) ( ) ( )

( ) ( ) ( )
*

cosh sinh sinh

sinh cosh sinh

j
j j j j j j

j j
j

j
j j j j j j

j j

q
i

T
q

i

δγ γ γ
γ γ

δγ γ γ
γ γ

 
∆ + ∆ ∆ 

 =  
 ∆ ∆ − ∆
  

 (3-8) 

where γj2 = |q j |2 − δ2. The fields u1, v1 and uN+1, vN+1 at the grating entrance and output respectively, 
are then related to each other by 

1 1 1 11 12 1
1

1 1 1 21 22 1

N
N j

N

u u u T T u
T T T T

v v v T T v
+

+

         
= ⋅ ⋅ ⋅ ⋅ = =         

        
… …  (3-9) 
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The reflection coefficient amplitude r(δ) is determined with the limit conditions u1 = 1 and 
vN+1 = 0 : r(δ) = v1 = -T21/T22. The transmission coefficient amplitude t(δ) is found from the limit 
conditions u1 = 0 and vN+1 = 1 : t(δ) = v1 = 1/T22. 

The proposed T-matrix formulation takes into account the overlap integral η that is often neglected 
[3-1, 3-4] and the fringe visibility effect can be integrated in the definition of the refractive index 
distributions ∆ndc and ∆nac. 

3.1.5 Causal T-matrix method 
For the section j of thickness ∆j, the grating effect can be approximated by a single complex 

reflector of reflectivity ρj (Fig. 3-3). The complex reflectivity factor ρj is defined from the complex 
coupling coefficient qj as 

( )
*

tanh j
j j j

j

q
q

q
ρ = − ⋅∆ ⋅  (3-10) 

 
Fig. 3-3 Parameters for section j 

In this case, the matrix Tj that represents the section j, can be formulated as the product of a pure 
propagation matrix T∆,j and of a transfer matrix Tρ,j [3-5] 

,
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j

j

i

j i

e
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e

δ

δ

∆

∆ − ∆

 
=  
  

 

*

, 2

11
11

j

j
jj

Tρ
ρ

ρρ

 −
=  

− −  
 

(3-11) 

that is 

, ,j j jT T Tρ∆= ⋅  (3-12) 

The factor (1-|ρj|2)−1/2 corresponds to the transmission amplitude. The matrix Tρ,j can also be 
obtained from equation(3-8) by letting qj → ∝ and the matrix T∆,j by letting qj → 0 holding the factor 
qj∆j constant.  

From equations (3-11), the fields propagation can be expressed in a recursion form (instead of a 
matrix product) 

( ) ( )
( )

2
1 *1

jij j
j

j j

r
r e

r
δδ ρ

δ
ρ δ

− ⋅ ∆
+

−
=

− ⋅
 (3-13) 

This recursion formula allows calculating the reflectivity rj+1 of the FBG constituted of the sections 
j to N. This propagation process is one of the required steps of the layer-peeling reconstruction 
method presented later in this chapter. 

We have denominated this method “causal” as all reflections in the section are located in a single 
point. This method is similar to Rouard’s method used in the simulation response of thin films [3-6]. 
The difference is in the thickness of the sections. For Rouard’s method, each grating period would be 
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divided in several sections (for a FBG this would lead to ∆j of a few tens of nanometers) while in the 
causal T-matrix, only the necessary number of sections is used to represent the slowly varying coupling 
coefficient (thickness of tens of micrometers are possible). This method is the direct counterpart of the 
layer-peeling reconstruction method, which allows to recover the complex coupling coefficient for a 
given complex reflectivity response. 

3.2 FBG synthesis and reconstruction 
This section presents an overview of the different methods used to retrieve the local parameters of 

a grating. A large emphasis has been given to the layer-peeling method, which has been employed in 
this work. 

3.2.1 Overview of reconstruction methods 
The retrieval of the grating parameters distribution from the grating spectral response has been 

widely studied. Several papers have been published where only the spectral amplitude or phase was 
exploited. In this case, the grating distributions needs to be monotonic [3-7, 3-8] or a priori assumption 
needs to be postulated (for example a gradient direction) [3-9]. As a consequence, only one parameter 
can be retrieved. For weak gratings, the knowledge of the intensity and the phase of the spectral 
response permits to reconstruct the grating profile via a Fourier Transform [3-2, 3-10]; for strong 
gratings, a backscattering technique is instead necessary [3-11, 3-12]. The layer-peeling technique 
discussed hereafter is a backscattering technique, which is highly efficient and not very sensitive to the 
measurement noise, when applied to the complex impulse response. Some methods use an iterative 
process where at each step a theoretical grating profile and its reflection or phase spectrum are 
generated and compared with a measured spectrum [3-13 to 3-16]. 

3.2.2 Discrete Layer-peeling  
The layer-peeling method has an origin in the geologic field. It has been developed to retrieve the 

ground properties from the seismic impulse response measured when a explosive charge is activated. 
The method is based on the propagation description of the fields through a discrete structure with 
simultaneous retrieval of the material impedance based only on causal arguments. The rigorous 
mathematical description of the method has been achieved for one-dimensional systems [3-17, 3-18] 
and its application in various other fields has been found. Application for the synthesis of FBG has 
been proposed by Faced et al. [3-19] and a simpler formulation has been proposed by Skaar et al. [3-5], 
where a continuous version of the layer-peeling is also presented but with no advantage over the 
discrete method. The method is briefly explained hereafter. It is based on the formulation of Skaar et 
al. and a modified version is also proposed for FBGs where some losses are observed during the 
propagation (for example tilted gratings). 

The layer-peeling method is a backscattering method based on the complex impulse response of an 
unknown structure (Fig. 3-4).  

 
Fig. 3-4 Backscattering problem 

The structure is divided in N layers of a physical thickness ∆. For a given impulse time τ, only the 
part of the grating that has been illuminated during the time interval of τ/2 can contribute to the 
impulse response (causality principle). This is represented by the white layers in Fig. 3-5. 
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Fig. 3-5 Layers and causality principle 

The causality principle imposes that all reflections in a layer occur at a single point (Fig. 3-6). 

 
Fig. 3-6 Single point reflection approximation 

It was assumed in the causal T-matrix that for a small enough layer, the FBG can be represented by 
a single, localized and complex reflector, as defined in equation (3-10). 

The complex reflection amplitude of the grating r1(ν) is given by the Fourier transform of the 
impulse response h1(τ) (and vice-versa). For τ = 0, only the first layer contribute to the impulse 
response and the complex reflector ρ1 is described by the impulse response for τ = 0, h1(0), as seen in 
Fig. 3-7. 

 
Fig. 3-7 First layer case 

The calculation of ρ1 from the discrete form of the spectral response is given by the discrete 
Fourier transform of r1(δm) for τ = 0 for which the exponential factor is canceled and then ρ1 is given 
by 

( )1 1
1

1 M

m
m

r
M

ρ δ
=

= ∑  (3-14) 

where the number of spectral points M must be greater than the number of layers N and where the 
detuning range |δ| is determined from the layer thickness : 

2
πδ ≤
∆

 (3-15) 

From the complex reflectivity r1 and the complex reflector ρ1, it is possible to use the equation 
(3-13) to calculate the reflectivity r2 = v2/u2 for the FBG without the first layer (peeled-off), which is 
represented in Fig. 3-8 by the gray layers (u and v are the forward and backward propagating modes). 
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Fig. 3-8 Field propagation through the first layer 

Only considering the remaining grating constituted of the layers 2 to N, we observe that its spectral 
response is known, namely r2. Then the same calculation process can be performed to retrieve the 
complex reflector value ρ2 of the second layer and the reflection response r3 of the grating constituted 
of layers 3 to N (Fig. 3-9). The whole grating complex reflector ρj are thus recursively reconstructed. 

 
Fig. 3-9 Second layer reconstruction 

The layer-peeling reconstruction algorithm is the counterpart of the causal T-matrix method 
(§3.1.5). 

In summary, from the starting reflection amplitude r1(δ)=r(δ), the grating is reconstructed in an 
iterative way. At each step, ρj is calculated for the first layer of the remaining structure at the step j and 
a new reflection amplitude rj+1(δ) is calculated for the structure without the layer j (peeled off) : 

( ) ( )
*

1

1 tanhM j
j j jm

j

q
r m q

M q
ρ

=
= = − ∆∑  

( ) ( )
( )

( )2
1 *1

i ij j
j

j j

r m
r m e

r m
δ αρ

ρ
− + ∆

+

−
= ⋅

−
 

(3-16a) 

(3-16b) 

where rj(m) is the discrete form of rj(δ) for / 2δ π≤ ∆  , M N≥  and Bδ β β= −  is the wavenumber 
detuning, 2 /effnβ π λ=  the light wavenumber and / 2 /B eff Bnβ π π λ= Λ =  the Bragg design 
wavenumber. 

3.2.3 Reconstructed FBG interpretation 
The complex coupling coefficients qj are calculated from the complex reflectors ρj through the 

equation (3-16a). The complex coupling coefficient distribution q(z) can then be calculated by 
interpolation between the positions j⋅∆. The complex coupling coefficient gives the local grating 
strength and its chirp and is related to the three distributions ∆nac(z), ∆ndc(z) and θ(z) by the following 
equations : 

( ) ( )acn z q zλ
ηπ

∆ = ⋅  

( ) ( ) ( )
0

2 ' '
2

z

q dcz z k n z dzπφ θ η= + − ∆∫  

(3-17a) 

 

(3-17b) 
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( ) ( ) ( )2q
dc

d z d z
k n z

dz dz
φ θ

η= − ∆  
(3-17c) 

where φq = Arg(q) and k has been evaluated at the design wavelength (λd = 2 neff Λd). We can notice 
that a single reconstruction cannot distinguish a period chirp from a DC refractive index chirp. For 
this reason, an effective grating period Λeff for each layer is defined, which represents the chirp 
function : 

( )
( )2 2 q

eff d

d z
z dz

φπ π
= +

Λ Λ
   or   ( ) ( ) 1

1
2

qd
eff d

d z
z

dz
φ

π

−
 Λ

Λ = Λ + 
 

 (3-18) 

where Λd is the design period. The local Bragg wavelength corresponds to 2Λeff⋅neff. The effective 
grating period can be expressed as a function of the ∆ndc and θ distributions 

( ) ( ) ( )
1

1
2

dcd
eff d

eff

d z n z
z

dz n
θ

η
π

−
 ∆Λ

Λ = Λ + − ⋅  
 

 (3-19) 

3.3 Calculated FBG spectral and impulse responses 
This section presents different results obtained by the simulations of the spectral response of 

lossless FBGs by T-matrix and the corresponding impulse responses calculated by Fourier 
transformation. A Bragg condition in the 1300 nm range has been chosen as for the experimental 
FBGs fabricated and characterized in chapter 4. The used algorithm is based on the T-matrix 
formalism of Erdogan [3-1], where the overlap integral η is not considered. The effective refractive 
index is adapted to keep the average refractive index constant to a value of 1.45. 

The representation of the impulse responses has been chosen to be as close as possible from 
OLCR measurements. For this reason, we have used a distance scale OPLD instead of a time scale τ. 
The relation between OPLD and τ is simply OPLD = c0⋅τ (c0 is the light speed in vacuum), that is, the  
OPLD corresponds to the traveled distance in vacuum during a time τ (in the context of OLCR, the 
OPLD corresponds to the optical path length difference in vacuum between the reference and test 
arms). Moreover, the representation of the impulse response amplitude in decibel scale is preferred, 
but in this case, a reference illumination light source needs to be defined. In order to remain consistent 
with the experiments presented in Chapter 4, a Gaussian light source with 40 nm spectral bandwidth 
and centered at the Bragg wavelength is used. The influence of the source bandwidth and the 
wavelength detuning between the FBG and the source central source wavelength is nevertheless 
described at the end of this section. 

3.3.1 Homogeneous FBG examples 
Homogeneous gratings are the simplest type of gratings that can be fabricated, and a good 

understanding of their spectral and impulse responses is very important. Two parameters can be 
adjusted for a given grating period : the grating length L and the refractive index modulation ∆nac. The 
cases of constant L, constant ∆nac and constant L⋅∆nac are presented hereafter. 

a) Constant length 
The grating length is set to 10 mm and the refractive index modulation amplitude to the following 

values : 10−6, 10−5, 5⋅10−5 and 2⋅10−4. The spectral response is presented in Fig. 3-10. The reflectivity 
amplitude shows saturation in the stop-band for refractive index modulation above 5⋅10−5 and for 
2⋅10−4, even the side-lobes positions are slightly moved. We observe that the reflection amplitude 
slopes are very close in the ripples regions for refractive index modulation under 10−4. 
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Fig. 3-10 Spectral reflectivity amplitude response in dB scale (top) and time delay 

(bottom) for homogeneous gratings of 10 mm length and refractive index 
modulation amplitude of 10−6 (dotted lines), 10−5 (dashed-dotted lines), 5⋅10−5 

(dashed lines) and 2⋅10−4 (solid lines) 

 
Fig. 3-11 Impulse response amplitude (top) and phase difference with the Bragg 

wavelength propagation phase (bottom) for homogeneous gratings of 10 mm length 
and refractive index modulation amplitude of 10−6 (solid lines), 10−5 (dashed 

lines), 5⋅10−5 (dashed-dotted lines) and 2⋅10−4 (dotted lines) 
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The time delay τ is defined as the derivative of the reflective amplitude phase with respect to the 
angular frequency ω 

2 1
2 2

r r rd d d
d c d d
φ λ φ φτ
ω π λ π ν

= = − =  (3-20) 

The reflection phase (of the amplitude signal) exhibits π shifts that induce discontinuities in the 
delay time simulation. For this reason, the time delay is calculated from the reflection phase of the 
intensity signal, which is twice the time delay obtained from the amplitude signal. The π shifts in the 
amplitude response become 2π shifts in the intensity and disappear in the unwrapping process (and 
then also the discontinuities). We observe that, away from the Bragg wavelength, the time delay 
asymptotically tends to the same value of 48.36 ps and independently from the grating strength ∆nac. 
(Fig. 3-10 bottom), corresponding to the time needed to travel back and forth in the grating. 

The corresponding impulse responses are presented in Fig. 3-11. Two regions are identified. The 
first one is the grating zone, with the OPLD inside the grating, that is OPLD < 2ngL, where ng is the 
group refractive index. The second one is related to the region after the grating output. The impulse 
response in the grating region is dominated by the reflections occurring at the corresponding position 
in the grating. In the region after the grating output, the impulse response is given by light that has 
been reflected several times in the structure, as for a Fabry-Perot resonator. 

At the grating entrance, all the light energy is available and the amplitude of the reflected signal is 
proportional to the refractive index modulation amplitude. While propagating in the grating, a part of 
the energy is gradually reflected for selected wavelengths and the amount of energy decreases. 

For small ∆nac, the pulse attenuation is also small and nearly constant impulse amplitude is 
observed (∆nac < 10−5). The impulse amplitude after the grating is very small indicating negligible 
multiple reflections. In this case, the complex coupling coefficient is directly the complex impulse 
response within the grating. This approximation is known as the Fourier approximation where only the 
first reflection is considered [3-3]. 

When the refractive index modulation increases, this approximation breaks and the impulse 
amplitude shows a more or less important decrease in the grating region and even total amplitude 
annihilation for a more important ∆nac (two times for ∆nac = 2⋅10−4). In the region after the grating, 
the signal amplitude is important and multiple reflections are observed. 

The phase difference between the impulse phase and the phase for propagation at the Bragg 
wavelength is constant except at amplitude poles and at the grating output where π-shifts are observed. 
This can be seen at the bottom of Fig. 3-11. This effect is similar to the phase shift observed for a 
reflection at a mirror interface. 

b) Constant refractive index modulation amplitude 
The spectral and impulse responses for a FBG at the constant refractive index modulation ∆nac of 

10−4 have been calculated for FBG lengths of 0.1, 1, 10 and 100 mm. The impulse response amplitudes 
are presented in Fig. 3-12, where the OPLD is given in a logarithmic scale. The phase difference is not 
presented as only the π-shifts are observed. The amplitude responses for positions inside the gratings 
are perfectly superposed due to the fact that all gratings have the same ∆nac. This means that the 
impulse response for a given OPLD is only influenced by the grating part between the grating entrance 
and a position inside the grating at a distance OPLD/(2neff) from this entrance. This is due to the 
causality principle that states that energy cannot be reflected at a grating position before the light has 
reached this region. It will be shown in the next section that this causality principle is the fundamental 
argument of the layer-peeling reconstruction method (§3.2). After the grating output position, the 
amplitude level increase with the grating length due to the fact that more photons are trapped inside 
the grating for several longer round-trips. For the smallest grating, the impulse response amplitude 
after the grating drops under −130 dB while for the 10 mm length grating, the output level is nearly as 
high as the grating entrance level.  
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Fig. 3-12 Impulse response amplitude of homogeneous FBGs with constant 

refractive index modulation amplitude and a length of 0.1 (solid line), 1 (dashed 
line), 10 (dashed-dotted line) and 100 mm (dotted line) 

 
Fig. 3-13 Spectral response amplitude [dB] and time delay [ps] as a function of 
the wavelength [nm] for the four FBGs with constant ∆nac = 10−4 and length of 

0.1, 1, 10 and 100 mm 

The corresponding spectral responses are presented in Fig. 3-13. There is a wavelength range 
scaling factor that is inversely proportional to the grating length (100 nm at 0.1 mm, 10 at 1, 1 at 10 
and 0.1 at 100). The reflection amplitude level increases with the grating length up to the saturation 
reflectivity of 0 dB. For the 100 mm grating, the saturation is observed even for some of the side-
lobes, resulting in a much wider band-gap. The time delay behavior also shows a scaling factor, which 
in this case is proportional to the grating length. 

c) Constant product of the length and the refractive index modulation amplitude 
Interesting scaling properties can be deducted in the case of FBGs for which the product ∆nac⋅L is 

kept constant. The spectral and impulse response of four gratings with ∆nac⋅L = 10−6 have been 
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calculated for grating lengths of 0.1, 1, 10 and 100 mm (the corresponding ∆nac are 10−2, 10−3, 10−4 and 
10−5 respectively). The impulse amplitudes are presented in Fig. 3-14 with respect to the OPLD on a 
logarithmic scale. As we can see, the shape of the responses is identical. The amplitude level is 
proportional to ∆nac while the OPLD range is proportional to the grating length. 

 
Fig. 3-14 Impulse response amplitude for constant ∆nac⋅L = 10−6 with 

(L = 100 mm, ∆nac = 10−5) in dotted line, (10, 10−4) in dashed-dotted line, (1, 
10−3) in dashed line, (0.1, 10−2) in solid line 

 
Fig. 3-15 Spectral response amplitude in [dB] and time delay in [ps] for the four 

FBG’s with constant constant ∆nac⋅L of 10−6 

The corresponding spectral responses are presented in Fig. 3-15. The amplitude shape is identical, 
with the same amplitude level but with different wavelength bandwidth, which is inversely 
proportional to the grating length. The time delays also exhibit the same shape, with the same 
bandwidth change but with an amplitude scaling factor proportional to the grating length. The relative 



 Chapter 3 

 3-13 

poor definition of the spectral response of the 100 mm grating is due to the limited resolution of the 
simulation. 

3.3.2 Non homogeneous FBG examples 
We define in this section two non-homogeneous gratings that will be important to characterize the 

reconstruction process. The first grating exhibits discontinuities and linear variations of the refractive 
index modulation amplitude and of the grating period. The second grating is a period step-chirped 
grating. 

a) Non homogeneous grating with discontinuities and ramps 
In order to study the influence of the different parameters in the reconstruction process, a 

particular non-homogeneous FBG has been designed. Such grating exhibits discontinuities, constant 
and ramp parts in the ∆nac, ∆ndc and Λ distributions. The refractive index modulation and local Bragg 
condition are presented in Fig. 3-16. The grating is divided in six sections of 2 mm length. The average 
refractive index distribution ∆ndc is opposite to the refractive index modulation amplitude ∆nac to keep 
the effective refractive index to a constant value of 1.45. The sections where the refractive index 
modulation and the Bragg condition are constant are simulated in a single layer. In the cases where a 
ramp exists, the section is divided in 100 layers and the varying parameter is linearly distributed. This 
grating is labeled FBG1. 

 
Fig. 3-16 Special FBG1 refractive index modulation amplitude ∆nac (top) and 

local Bragg condition 2neffΛ (bottom) 

The spectral response for this grating is presented in Fig. 3-17. The main spectral region extends 
from 1298 to 1302 nm and a very complicated spectral amplitude and time delay are observed. 
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Fig. 3-17 Spectral response amplitude [dB] (top), linear scale (middle) and time 

delay (bottom) for FBG1 

 
Fig. 3-18 Impulse response amplitude [dB] (top) and phase difference of the 

impulse phase with respect to the phase of a propagation at 1300 nm (bottom) for 
FBG1 with two OPLD scales; the vertical lines in the left part of the figure 

indicate the grating sections limits 

The impulse response of FBG1 is then presented in Fig. 3-18. The left part of the figure presents 
the details of the grating region, where the vertical lines indicate the limits of each section of the 
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grating. The first section exhibits a large amplitude decrease due to the high ∆nac. The amplitude after 
the first section is difficult to directly interpret due to the high grating strength that greatly modifies the 
pulse spectral properties during the propagation. The reconstruction for this kind of grating is then 
very important. 

b) Period step-chirped grating 
A second non-homogeneous grating, FBG2, has been simulated to investigate the reconstruction 

limits. The length is 10 mm, the refractive index modulation is constant (5⋅10−4) and the grating period 
is divided in ten sections with different values linearly distributed to give Bragg conditions between 
1298 to 1302 nm. The refractive index modulation amplitude (∆nac) and the Bragg wavelength (2Λneff) 
distributions of such grating are seen in Fig. 3-19. 

The corresponding spectral response is shown in Fig. 3-20. The amplitude exhibits a nearly 
rectangular response between 1298 and 1302 nm. The amplitude and the time delay responses show 
ripples. 

The impulse response amplitude of FBG2 (Fig. 3-21) shows an important amplitude drop for the 
first section, but then the signal increases at the entrance of any other section and the overall level is 
constant in the grating region. This is explained by the fact that each section reflects a different part of 
the source spectrum. The amplitude drop greater than 20 dB at the grating output indicates that few 
photons are trapped inside the structure for several round-trips. We observe that the second derivative 
of the phase difference, d2∆φ/dOPLD2 (∆φ is the phase difference), is negative in the grating region 
and then constant after the grating output. This effect is explained by the decrease of the Bragg 
condition distribution along the grating. 

 
Fig. 3-19 Special FBG2 refractive index modulation amplitude (top) and local 

Bragg condition (bottom) 
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Fig. 3-20 Spectral response amplitude in dB (top) and in linear scale (middle), 

and time delay (bottom) for the FBG2 

 
Fig. 3-21 Impulse response amplitude (top) and phase difference with the phase of 

propagation at 1300 nm (bottom) for FBG2 

3.3.3 Source effect 
The decibel scale representation of the impulse response amplitude depends on the spectrum of the 

light propagating in the grating. For simulation purpose, a theoretical light source with Gaussian 
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spectral shape is defined, which is determined by its central wavelength and bandwidth. The influence 
of these parameters in the calculation of the impulse response can be seen as a windowing effect 
applied to the Fourier transform of the grating spectral response. 

a) Source bandwidth effect 
The influence of the source bandwidth is presented in Fig. 3-22. The FBG is homogeneous, 10 mm 

long with a refractive index modulation amplitude of 2⋅10−4. The central wavelength of the light source 
is set to the Bragg wavelength of 1300 nm. The impulse response obtained for a theoretical source 
with bandwidth of 1, 5, 25 and 125 nm is shown. The impulse response amplitude is inversely 
proportional to the source bandwidth. This can be explained since for smaller bandwidth sources, the 
coherence length is larger and then the coherent reflection is higher. The counterpart to higher 
amplitude is a wider transition region that is observed at the grating input and output. The convolution 
process with a function of higher coherence length explains this. It is important to notice that this 
“smoothing” effect does not affect the impulse response amplitude near poles (impulse response 
position for which the amplitude sharply drops to zero and the phase difference has a π−shift). 
Moreover, we can observe that the phase difference is not affected by the source bandwidth. 

 
Fig. 3-22 Source bandwidth effect on the complex impulse response amplitude (top) 

and phase difference (bottom) for a 10 mm homogeneous grating with 2⋅10-4 refractive 
index modulation; 125 nm (solid lines), 25 nm (dashed lines), 5 nm (dashed-dotted 

lines) and 1 nm (dotted lines) source bandwidth have been simulated 

b) Source detuning effect 
The influence of the detuning wavelength between the FBG and the broadband source central 

wavelength has been studied for a 40 nm bandwidth source. The results are shown in Fig. 3-23 for a 
detuning of 0, 10, 30 and 50 nm, respectively. The impulse responses for a detuning smaller than 
10 nm are very close to the case without detuning. For a more important detuning, the impulse 
amplitude drops consistently due to the reduced overlap between the FBG and the source. Another 
effect also appears : for high detuning, the amplitude signal at the grating input and output presents an 
peak due to the refractive index step that acts like a broadband mirror. This is presented in the zoomed 
view of the grating output in Fig. 3-23 (the curves has been shifted in the OPLD axis for clarity). The 
phase difference shows a smoothing effect, that is the π-shifts are spread over an OPLD range 
proportional to the detuning. 
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Fig. 3-23 Source detuning effect on the complex impulse response amplitude (top) 

and phase difference (bottom) for a 10 mm homogeneous grating with 2⋅10-4 
refractive index modulation; 0 nm (solid lines), 10 nm (dashed lines), 30 nm 
(dashed-dotted lines) and 50 nm (dotted lines) detuning values are considered 

3.4 Reconstruction examples 
This section studies the principal parameters that intervene in the reconstruction of FBG by layer-

peeling. The limits of the reconstruction methods are presented. The influence of the layer thickness 
and the number of used spectral points is evaluated. The reconstruction from a starting complex 
reflection response or impulse response is analyzed from the point of view of the available dynamic 
range and the influence of noise. 

3.4.1 Reconstruction limits 
We have shown in section 3.3.1 that the spectral reflectivity of homogeneous gratings can saturate 

when the grating length and refractive index modulation amplitude are sufficiently important. This 
effect is explained by the fact that the light components, for which the wavelength is in the saturation 
bandwidth, are completely reflected before the grating output. This effect is not limited to 
homogeneous FBGs. 

For such gratings that have a saturation bandwidth in reflection, the reconstruction by layer-peeling 
reaches its limits as a part of the grating is not probed by all possible wavelengths. This can be 
observed in the reconstruction of homogeneous gratings with different lengths and identical refractive 
index modulation amplitude (∆nac of 2⋅10−4), as presented in Fig. 3-24. The reconstruction of the 1 mm 
long grating is complete, but for the 10 mm grating, the last 2 mm show a small coupling amplitude 
decrease and also a small remaining coupling amplitude after the grating output position, indicating 
reconstruction errors. The layer-peeling algorithm clearly fails to reconstruct the 20 mm long FBG as 
we observe that the amplitude and phase information of the coupling coefficient are not reconstructed 
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for more than half the grating length. We have performed the reconstruction of the 20 mm long FBG 
with two spectral resolution values and if a better reconstruction is observed for the higher spectral 
resolution, the complete reconstruction also failed in this case. 

 
Fig. 3-24 Layer-peeling reconstruction with 5 µm layer thickness of the coupling coefficient 
amplitude (top) and local Bragg wavelength calculated from the coupling coefficient phase 
(bottom) for homogeneous gratings of refractive index modulation of 2⋅10−4 for different 

lengths L and number of spectral points M (N represents the number of layers) 

 
Fig. 3-25 Layer-peeling reconstruction of the coupling coefficient amplitude (top) and local 

Bragg wavelength calculated from the coupling coefficient phase (bottom) for the FBG2 (left) 
and a 10 mm long homogeneous FBG with a ∆nac of 5⋅10−4; the reconstruction parameters 
are : ∆ = 3 µm, M = 30 N for solid lines and ∆ = 20 µm, M = 10 N for dashed lines; 

the dashed lines are shifted for clarity 
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Another illustration of this spectral depletion effect that limits the reconstruction by layer-peeling is 
presented in Fig. 3-25 where the reconstruction of a 10 mm long and period chirped FBG with 
constant ∆nac (FBG2) is compared to the reconstruction of a FBG with the same parameters but 
without the chirp. The homogenous grating reconstruction falls down after 3 to 4 mm, while the 
complete chirped grating can be reconstructed. The chirped grating has a smaller maximal reflection 
amplitude and a broader bandwidth that prevents the complete depletion of a particular spectral 
bandwidth. 

Recently, it has been demonstrated that the worst-case error amplification factor in reconstructing a 
grating from its complex reflection spectrum by layer-peeling is of the order of 1/Tmin, where Tmin is 
the minimum transmission amplitude through the grating [3-20]. 

The limitations of the reconstruction for not too strong FBGs can be partially overcome in two 
ways. The first possibility is to reconstruct the grating from both sides and to combine only the first 
half of the reconstruction distributions. The second alternative is an experimental method that is a 
consequence of the results presented in Fig. 3-25, where a predefined chirp function is applied to the 
grating by a temperature ramp or a strain ramp. The applied chirp needs to be sufficient to reduce the 
maximal reflectivity of the grating. 

3.4.2 Layer thickness 
The reconstructions of the FBG1 for different layer thickness (5, 20, 50 and 100 µm) are presented 

in Fig. 3-26. The number of spectral points M is set to ten times the number of layers (it will be seen in 
the next sub-section that a higher number of spectral points is not necessary). Apart from the reduced 
resolution observed at discontinuities, the reconstructions are not much affected from the layer 
thickness. 

 
Fig. 3-26 Reconstructed coupling coefficient amplitude (top) and local Bragg 

wavelength (bottom) for the FBG1 performed with M = 10N and different layer 
thickness parameters : 5 µm for the solid lines, 20 µm for the dashed lines, 

50 µm for the dashed-dotted lines and 100 µm for the dotted lines; the curves are 
translated for clarity 

3.4.3 Number of points 
The choice of the number of spectral points M required for the reconstruction process by layer-

peeling is not absolute but depends on the number of layers N (and is then inversely related to the 
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layer thickness). Fig. 3-27 presents the reconstructions of FBG1 performed with a 3 µm−layer 
thickness and a ratio M/N of 1, 2, 5 and 10, respectively. The reconstruction is poor for M = N and 
fairly good for M = 2N. For M/N higher than 5 or ten, the results are very close. For very strong 
gratings, a ratio increase to 30 or 50 improves the reconstruction, but not in a significantly way (Fig. 
3-24). 

 
Fig. 3-27 Reconstructed coupling coefficient amplitude (top) and local Bragg 

wavelength (bottom) for the FBG1 performed with layers thickness of 3 µm and 
different ratio M/N : 10 for the solid lines, 5 for the dashed lines, 2 for the 

dashed-dotted lines and 1 for the dotted lines; the curves are translated for clarity 

3.4.4 Reduction of the Gibb's effect 
The calculation of the ρj values is performed through a Fourier transform and it is known that 

Fourier transforms of bandwidth limited spectral function give some oscillation at each discontinuity 
(Gibb’s phenomenon). A standard way to limit these oscillations is to window the original spectral 
response with an apodization function. Another way is to reduce the resolution by averaging the 
Fourier transform over several points. This windowing effect has been simulated and the results are 
presented in Fig. 3-28. The solid lines for the case without windowing clearly show the Gibb’s 
oscillations and exhibits very good reconstruction at the other locations. The dashed lines (which 
represent the reconstruction from the spectral response windowed with a Hann function) show that 
the oscillating effects at the edges are suppressed but the reconstruction is less efficient after 7 mm due 
to the energy loss induced by the windowing. We could notice this effect because the FBG1 has been 
design not to be easily reconstructed. 

The most interesting results are found for the third (dashed-dotted lines) case where the spectral 
response is not windowed but the resulting reconstruction is averaged over 3 points 

( ) ( ) ( ) ( )1 12
4

j j j
j

f p f p f p
f p − ++ +

=  (3-21) 

where f is the coupling amplitude or the local Bragg wavelength and pj is the discrete position j. This 
method offers the best reconstruction results at the price of a slightly reduced resolution (that can be 
recovered by reducing the layer thickness). 

3.4.5 Reconstruction from the complex spectral response 
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Here, we consider the simulation of the reconstruction from experimental complex spectral 
response. The influence of the available dynamic range and of the noise is analyzed. 

 
Fig. 3-28 Reconstructed coupling coefficient amplitude (top) and local Bragg 

wavelength (bottom) for the FBG1 performed with layers thickness of 20 µm, a 
ratio M/N = 10 without windowing (solid lines), without windowing but with 

averaging (dashed-dotted lines) and with hann windowing (dashed lines); the 
curves are translated for clarity 

 
Fig. 3-29 Reconstructed coupling coefficient amplitude (top) and local Bragg 

wavelength (bottom) for the FBG1 performed with layers thickness of 5 µm, a 
ratio M/N = 10, and for a spectral intensity range of 60 dB (solid lines), 40 dB 
(dashed lines) and 20 dB (dashed-dotted lines); the curves are translated for clarity 
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a) Spectral response dynamic range 
The dynamic range is defined in our context as the available signal range between the maximal 

value and the noise level. The spectral signal considered is the reflection intensity. The impact of the 
available dynamic range is presented in Fig. 3-29 for 20, 40 and 60 dB dynamic range. The 
reconstruction is relatively poor for the 20 dB limited dynamic range and quite good for the 40 dB 
case, except from some non compensated oscillations at the section edges. The reconstruction with a 
dynamic range of 60 dB or higher is very good. 

b) Spectral response noise 
Noise in experimental measurement is inevitable and its influence on the reconstruction from the 

spectral response is simulated hereafter. For a given spectral point r = |r|⋅eiφ, a noisy spectral point 
rn = |rn|⋅eiφn is calculated : 

( )1n o sr A rand A rand r= ⋅ + + ⋅ ⋅  

( )1n o sP rand P randφ φ= ⋅ + + ⋅ ⋅  
(3-22) 

where Ao and As are the noise amplitude offset and scale factor, respectively; Po and Ps the noise phase 
offset and scale factor, respectively; and finally "rand" a random number between ± 0.5. The most 
important parameters are the noise amplitude scale factor As and the noise phase offset factor Po. The 
results for 5, 10, 20 and 30 % scale noise and phase offset of π/100, π/50, π/20 and π/10, 
respectively, are presented in Fig. 3-30. It is seen that even for the smallest noise case the 
reconstruction encounters problems and oscillations are observed. For more noisy data, the oscillations 
increases and reconstruction errors becomes very important. 

 
Fig. 3-30 Reconstructed coupling coefficient amplitude (top) and local Bragg 

wavelength (bottom) for the FBG1 performed with layers thickness of 5 µm, a 
ratio M/N = 10 for a different noisy spectral responses; solid lines : Ao = 10−6, 

As = Ps = 5%, Po = π/100; dashed lines : Ao = 10−5, As = Ps = 10%, 
Po = π/50; dashed dotted lines : Ao = 10−4, As = Ps = 20%, Po = π/20; 

dotted lines : Ao = 10−3, As = Ps = 30%, Po = π/10; the curves are shifted for 
clarity 
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3.4.6 Reconstruction from the complex impulse response 
Here, the simulation of the reconstruction from the complex impulse response is discussed. The 

dynamic range and noise effect are also considered. 

a) Impulse response dynamic range 
The impact of the available dynamic range is presented in Fig. 3-31 for 20, 40, 60 and 80 dB of 

dynamic range, respectively. In this case, the dynamic range is defined from the dB representation of 
the impulse response amplitude with an illumination light source centered at 1300 nm with 40 nm 
bandwidth. Some oscillations are observed for the smaller dynamic range examples, especially at the 
last third of the grating reconstruction. Nevertheless, the impact is less important as what has been 
observed in Fig. 3-29 for the reconstruction case from the spectral response. 

 
Fig. 3-31 Reconstructed coupling coefficient amplitude (top) and local Bragg 

wavelength (bottom) for the FBG1 performed with layers thickness of 5 µm, a 
ratio M/N = 10 for a impulse amplitude range of 80 dB (solid lines), 60 dB 
(dashed lines), 40 dB (dashed-dotted lines) and 20 dB (dotted lines); the curves 

are translated for clarity 

b) Impulse response noise 
The starting functions are the impulse response amplitude ha and the phase difference hp. The noisy 

impulse response is calculated in a similar manner as it has been performed for spectral data in 
equation (3-22) 

( ), 1a n o s ah A rand A rand h= ⋅ + + ⋅ ⋅  

( ), 1p n o s ph P rand P rand h= ⋅ + + ⋅ ⋅  
(3-23) 

where Ao and As are the noise amplitude offset and scale factor, respectively; Po and Ps the noise phase 
offset and scale factor, respectively; and finally "rand" a random number between ± 0.5. The results for 
5, 10, 20 and 30 % scale noise and phase offset of π/100, π/50, π/20 and π/10, respectively, are 
presented in Fig. 3-32. The local Bragg wavelength, calculated from the derivative of the coupling 
coefficient phase, has been necessarily performed on several reconstruction points to limit the high 
variations of the noise. This procedure was not necessary for the reconstruction from the noisy 
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spectral response as the noise effect is spread over the whole grating reconstruction. The coupling 
coefficient amplitude shows only localized noise, but not an overall shape change, except from some 
oscillations for very noisy cases. This indicates that the impulse noise impact in the reconstruction is 
mainly restricted to the corresponding grating position. Other experiments with single defect 
measurement impulse response points have shown that the reconstruction presents also a single defect 
point at the corresponding grating location. This explains that even for small phase noise, the 
derivative noise is very important but the underlying local Bragg wavelength is conserved if averaged 
on several points. Compared to the reconstruction from a noisy spectral response, the reconstruction 
from a noisy impulse response exhibits better results. 

 
Fig. 3-32 Reconstructed coupling coefficient amplitude (top) and local Bragg 

wavelength (bottom) for the FBG1 performed with layers thickness of 5 µm, a 
ratio M/N = 10 for a different noisy impulse responses; solid lines : Ao = 10−7, 

As = Ps = 5%, Po = π/100; dashed lines : Ao = 10−6, As = Ps = 10%, 
Po = π/50; dashed dotted lines : Ao = 10−5, As = Ps = 20%, Po = π/20; 

dotted lines : Ao = 10−4, As = Ps = 30%, Po = π/10; the curves are translated 
for clarity 

3.5 Methods for characterizing FBGs with loss or with 
refractive index and period chirp components 

3.5.1 Characterization of FBGs with loss 
In Chapter 2, we have seen that a tilt in the grating is associated with an excess loss. In a first 

approximation these losses are assumed to be frequency independent and they are included in a loss 
matrix Tαj defined as 
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The similarity with the pure propagation matrix allows to define a new propagation matrix that 
takes account of the loss : 
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The loss matrix can be adapted to other types of loss, frequency dependent or not via the 
parameter α. The recursion equation becomes in this case 
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The reconstruction for FBGs experiencing losses, which can be described with the loss matrix Tα,j, 
is possible with the layer-peeling method by using the recursive equation (3-26) instead of (3-13). 

3.5.2 Method to distinguish period chirp and DC refractive index 
chirp 

The ∆ndc and Λ distributions can be found if the FBG parameters are reconstructed for different 
temperature or strain states. We consider here the case of two reconstructions q1 and q2 of the same 
grating at two different temperatures T1 and T2, respectively. The temperature effect on the grating 
modify the physical grating period Λ and the effective refractive index neff 

( ) ( ) ( ) ( )2 1 1
11 1eff eff eff n
eff

dnn T n T T n T T
n dT

α
 

= + ∆ = + ∆  
 
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11 1dT T T T T
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Λ Λ = Λ + ∆ = Λ + ∆ Λ 

 

(3-27) 

where ∆T = T2−T1, αΛ is the thermal expansion coefficient for the fiber material (approximately 
0.55⋅10−6 for silica) and αn represents the thermo-optic coefficient (8.6⋅10−6 for germania-doped, silica-
core fiber). The changes in the ∆nac and ∆ndc are neglected as the refractive index changes due to the 
temperature mainly modify the effective refractive index (∆n << neff). The reconstructed coupling 
coefficients are performed using neff(T1) and neff(T2). The coupling coefficient phases φ1 and φ2 are 
given by equation (3-17) and their difference ∆φ is reduced to 
 

( ) ( ) ( ) ( ) ( ) ( )2 1 2 1z z z z z zφ φ φ θ θ θ∆ = − = − = ∆  (3-28) 

The grating period Λ is given by 

( ) ( )2 2

d

z z z
z

π π θ= +
Λ Λ

 (3-29) 

where Λd is the design period used in the layer-peeling reconstruction process. Combining equations 
(3-27) to (3-29), the grating period for temperature T1 is then found to be 

( ) ( ) ( ) ( ) ( )1
2 2,
1 1
z T z TT z

z T z T
π α π α

θ α φ α
Λ Λ

Λ Λ

− ∆ ∆
Λ = = −

∆ ⋅ + ∆ ∆ ⋅ + ∆
 (3-30) 

From the grating period, the distribution ∆ndc can be obtained from equation (3-17b) 

( )
( ) ( )( )1 1

1

, ,1,
2

q
dc

d T z T z
n T z

k dz
θ φ

η
−

∆ = ⋅  

( ) ( )1
1

1 1, 2
,d

T z z
T z

θ π
 

= ⋅ Λ Λ 
 

(3-31) 



 Chapter 3 

 3-27 

3.6 Summary 
An evolution of the causal T-matrix method has been proposed to take account of the losses that 

can occur in gratings, for example in the cases of blazed FBGs. This evolution has leaded to a 
modified layer-peeling reconstruction method that can be applied on grating with distributed losses. 

We have seen that the reconstruction by layer-peeling allows to find the grating strength, function 
of ∆nac, and the chirp function. In order to differentiate the period chirp from the DC refractive index 
chirp, at least two reconstructions at different temperatures (or axial strains) are required. 

The simulation of the reconstruction with different parameters has shown that the required 
dynamic range of the starting spectral or impulse response is not fundamental and that the number of 
spectral point has to exceed 10 times the number of layers. Observation of the reconstruction of noisy 
data has shown that the influence of noise is less important for the reconstruction starting from the 
impulse response. Finally, the reconstruction process by layer-peeling is limited for very strong gratings 
for which a spectral bandwidth is depleted before the grating end. Measurements from both sides and 
application of a temperature or axial strain ramp can improve partially the reconstruction of these 
strong gratings. 
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Chapter 4 
 

FBG characterization by optical low coherence 
reflectometry 

 
 
 
 
 

Precise characterization of the grating parameters is essential and the knowledge of the local 
distributions (∆nac, ∆ndc and Λ) is often desired during the writing process or in distributed sensing. It 
has been shown that optical low coherence reflectometry (OLCR) is a powerful method to characterize 
the position, length, and index modulation of homogeneous FBGs [4-1]. 

Measurements using interferometers can be affected by small perturbations, like temperature 
variations or vibrations, in both interferometer arms that modify the optical path length difference 
(OPLD). Corresponding drifts of the interference signal phase have to be compensated or the 
measurement has to be performed in a few milliseconds for assuring high accuracy. A high speed 
OLCR set-up has been developed to retrieve the complex spectral properties of chirped gratings [4-2]. 
The drawback is a limited S/N (shot noise) of typically −80 dB [4-3]. In this work, we built a new 
OLCR set-up, where the S/N is only limited by the Rayleigh scattering in the fiber and the phase drifts 
are compensated. The OLCR phase information of a FBG is precisely measured by comparing it with 
the phase of a tunable laser at the same wavelength. 

In this chapter, we will show that the OLCR response is mainly the impulse response of the 
measured FBG. Moreover, the interference of partially coherent light is presented and its application 
to the OLCR case is developed. Two interfereometers have been conceived and realized, where the 
reference laser was either wavelength multiplexed or time multiplexed. The reconstruction process of 
the complex coupling coefficient from the measured OLCR response is exposed. Several FBGs with 
different properties were measured and their local properties reconstructed. 

4.1 Methods for measuring the complex impulse 
response of a grating 

It has been shown in chapter 3 that the complex coupling coefficient q(z) of a grating can be 
reconstructed from the grating complex impulse response in reflection h(τ) (z is the position along the 
grating and τ the time). The representation of a FBG in the time domain is not as usual as in the 
frequency domain. For such reason, we present here in Fig. 4-1 the spectral and the impulse responses 
of a homogeneous grating. The grating is 5 mm long with a refractive index modulation amplitude of 
2⋅10-4, an effective refractive index of 1.45 and a period corresponding to a Bragg wavelength of 
1.3 µm (Fig. 4-1a). The reflection intensity |r|2, where r is the reflection amplitude, and the time delay 
of the grating are shown in Fig. 4-1b. The impulse response amplitude |h(τ)| (Fig. 4-1c) shows that 
the interesting time range is about 200 ps. Fig. 4-1d reports the real part Re(h(τ)) of the FBG impulse 
respones. The period of Re(h) is 4.34 fs, which corresponds to a phase change of 2π for h(τ). The 
impulse response can also be viewed in a distance scale x, corresponding to the travel distance in free-
space for the given impulse time (x = c0τ where c0 is the vacuum light speed). The distance for 200 ps 
is 6 cm and the phase period is the 1.3 µm of the Bragg wavelength. 
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Fig. 4-1 Parameters of a homogeneous FBG (a); Spectral reflection intensity and 

time delay (b); Impulse response amplitude (c) and real part (d) 

 There are three main ways to experimentally obtain h(τ) : 
− Direct method : launch a light pulse at the entrance of the grating and collect the time 

response h(τ) of the reflected light 
− OLCR (optical low coherence reflectometry) method : measure the interference signal 

between a low coherence light reflected by the FBG with a delayed part of the same 
source light 

− Spectral method : measure the complex reflection spectral response and then perform a 
Fourier transform 

The direct method is very difficult to realize due to the very small time scales (200 ps duration with 
periodic modulation of 4 fs for the grating presented in Fig. 4-1). The light pulse, ideally a Dirac 
function of time, would need to be as short as a few femtoseconds. The detection system also would 
need to be extremely fast to measure the electric field variations. These constraining technical 
requirements explain why such FBG characterization method has not been used yet. 

The OLCR method uses the property inherent to a broadband light source to interfere only with a 
very small delayed version of itself, corresponding to a travel distance of a few micrometers, which is 
defined as the coherence length [4-4]. The resulting interference signal corresponds to the impulse 
response h(τ) smoothed over a few micrometers due to a convolution with the source coherence 
function. A detailed description of the OLCR method is presented in the following section 4.2. 

The spectral method, consisting in the measurement of the FBG reflection amplitude and phase, has 
been published recently, but several drawbacks can be identified. Actually, the precise measurement of 
the spectral response phase is difficult and slow [4-2]. The measurements errors have important effects 
on the calculated Fourier transform that limits the h(τ) dynamic range and introduce a large amount of 
noise in the reconstructed coupling coefficient (§3.4.5). 
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4.2 OLCR measurement of the complex impulse 
response 

4.2.1 Overview 
This section presents the main aspects of an OLCR and its application to the characterization of 

the FBG impulse response h(τ). The OLCR technique is based on a scanning Michelson or Mach-
Zender interferometer coupled with a broadband light source. Fig. 4-2a presents a simplified all-fiber 
Michelson type OLCR set-up for FBG characterization. The 3 dB-coupler (X) splits the low coherent 
source light (L) in two components that propagate in the so-called reference and test arms. Partial or 
total reflections occur on the moveable mirror (M) and inside the FBG (FBG). Half the reflected light 
from the reference and test arms is sent back to the detector (D) through the coupler. The position Pt 
in the test arm is located at the FBG entrance. The optical path length in the reference arm between 
the coupler and the position Pr corresponds to the optical path length in the test arm between the 
coupler and the position Pt. The physical distances from coupler to Pr and Pt are different due to the 
free-space part of the reference arm (i.e. a distance d in vacuum corresponds to a distance d/ng in the 
fiber where ng is the group index of the fiber). The optical path length matching implies that the input 
electrical fields E0 at Pr and Pt have the same phase. As a consequence, the reflected fields at the 
detector are a delayed version of Er and Et at Pr and Pt, respectively, with the same delay time and with 
half the intensity due to the coupler ( 1/ 2  in amplitude). 

 
Fig. 4-2 Basic OLCR set-up for FBG characterization (a) and main interfering 

region in the FBG for a mirror position z 

The measured optical intensity by the detector, I(z), can then be expressed as  

( ) ( ) ( )( ) ( )( )2 2 2 *1 1 Re
2 2r t r t r tI z E z E E z E E z E= + = + +  (4-1) 

where z is the mirror position (z = 0 coincides with Pr). The first term corresponds to the sum of the 
intensities of each signal and the second one is the interfering contribution. For a mirror position z, the 
interference signal can be seen as the superposition of the mirror reflected light and the reflection of 
the small FBG part located at z/ng of width Lc (Fig. 4-2b) where Lc is the light coherence length (a few 
micrometers). This intuitive description does not take into account the input light attenuation along 
the grating and multiple reflections. We will show in the following sections that the measured OLCR 
signal corresponds to the interference intensity 

( ) ( )( ) ( ) ( )( )* 1Re Re
2OLCR r t sI z E z E I hγ τ τ= = ∗  (4-2) 

where Is is the light source intensity, γ(τ) the complex degree of coherence of the light source, h(τ) the 
impulse response of the FBG, c0 the light speed in vacuum and τ = 2z/c0. The impulse response h(τ), 
in reflection, is defined at the FBG entrance, Pt, and corresponds to the Fourier transform of the 
complex reflection amplitude r(ν). We will show that γ(τ) is the normalized Fourier transform of the 
light source spectral power density (equation (4-9)). 
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In the following subsections, the formal frame to describe the temporal coherence effects is 
introduced. The complete description of the OLCR signals of FBGs will be derived in the case of 
fibers with or without dispersion. 

4.2.2 Temporal coherence in vacuum 
The light electric field (E) oscillation frequencies are extremely high, that is hundreds of terahertz 

for frequencies corresponding to a period of a few femtoseconds, and conventional detectors cannot 
measure directly E. For stationary fields, the time average of E is null and this explains why detectors 
are set to measure a time average of the square field amplitude called the intensity I as defined in 
equation (4-3) 

2 21lim
2

T

T T
I dt E E

T→∞ −
= =∫  (4-3) 

Standard detection systems have averaging range of a few picoseconds to several nanoseconds. This 
averaging process of the signal intensity leads to three types of coherence functions [4-5] : 

− the temporal coherence function that represents the ability of a light source to interfere 
with a delayed version of itself 

− the spatial coherence function that represents the ability of a light source to interfere 
with a spatially shifted version of itself 

− the polarization coherence function that represents the ability of a light source to 
interfere with another state of polarization version of itself 

Here, the spatial coherence is neglected by assuming localized light source and one-dimensional 
propagation. The polarization coherence function is also not considered by assuming non-polarized 
light and propagation preserving the polarization. 

In order to theoretically describe the temporal coherence, the electric field E is represented in the 
orthogonal basis of frequency with a single parameter of time t 

( )

( )
( )

1,

( )
,n

E t

E t E t
E t ν

ν

ν

 
 
 = =    
 
  

#

#

 (4-4) 

This is a continuous and infinite decomposition, and frequency components of E cannot interfere 
with each other since they are orthogonal. The intensity I(t) is then found to be 

( ) ( ) ( ) ( ) ( ) ( )2 2 *I t E t d E t d E t E t d Sν ν νν ν ν ν= = = =∫ ∫ ∫  (4-5) 

where S(ν) is defined as the spectral power density. S(ν) constant with time due to the stationary 
properties of the light considered in this case. 

The temporal coherence effects occur when two delayed version of the same light are superposed. 
For this reason, we now consider two light waves with electrical field E1 and E2 defined as 

( ) ( ) ( ) ( )2
1

ii t
sE t E t S e e φ νπνν = =  

 

( ) ( ) ( ) ( ) ( )2
2

i t i
sE t E t S e eπν τ φ ντ ν + = + =  

 
(4-6) 

where E1 and E2 represent two delayed versions of the same light, with source electric field signal Es 
and intensity Is emitted at time t and t + τ. The frequency dependent phase factor φ(ν) is related to the 
emission process. The intensity I(τ), given by the superposition of E1 and E2, is independent of the 
time due to the stationary properties of the light and is expressed as 

 ( )I τ  ( ) ( ) ( ) ( ) ( ) ( )( )2 2 2 *
1 2 1 2 1 22ReE t E t E t E t E t E t= + = + +  (4-7) 
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 ( )I τ  ( ) ( )( ) ( )( )*2 2Re 2 2Res s s sI E t E t Iτ τ= + + = + Γ  

where Γ(τ)=<Es(t)Es*(t+τ)> is the autocorrelation function of the light source also called the temporal 
coherence function. From equation (4-6) we can see that 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )22 2i i t ii t id S e e S e e d S eφ ν πν τ φ νπν πνττ ν ν ν ν ν− + − −Γ = =∫ ∫  (4-8) 

which is the well known Wiener-Khintchine theorem, with Γ(τ) and S(ν) forming a Fourier pair. It is 
often more convenient to use a normalized coherence function γ(τ) called the degree of coherence and 
defined as 

( ) ( )
( ) ( ) 21
0

i

s

d S e
I

πνττ
γ τ ν ν −Γ

= =
Γ ∫  (4-9) 

The intensity I(t) becomes 

( ) ( )( )( )2 1 ResI Iτ γ τ= +  (4-10) 

4.2.3 Propagation in vacuum 

a) Michelson interferometer example 
A free-space Michelson interferometer can be used as a simple experimental method for measuring 

γ(τ) (Fig. 4-3a). The light source (L) with its spectrum centered at λ  emits the stationary electric field 
Es(t). The test (Mtest) and reference mirrors (Mref) are placed at a distance h1 and h2 respectively from 
the beam splitter (BS). The signals back-reflected from reference and test arms Eref and Etest interfere at 
the detector (D). 

 
Fig. 4-3 Free-space Michelson interferometer set-up (a) and simulated 

interferogram (b) 

We consider perfects mirrors with 100 % reflectivity coefficients and a 3 dB beam splitter (these 
assumptions influence only the constant coefficients). In this case, the reference and test intensities are 
identical and equal to a forth of the light source intensity Is. The light propagation constant in vacuum 
is k = 2πν/c0, c0 = 3⋅108 m/s is the light speed in vacuum and then 

 ( )refE t  ( )
2

2 0

22
2

, ,
1 1
2 2

hi
ik h ci t i t

s sE e e E e e
πν

ω ω
ν ν

 
 = =      

 

 ( ) ( )22
, , 2

1 1 1
2 2 2

i tii t
s s sE e e E e E tω τωτω

ν ν τ+  = = = +     

(4-11) 
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where the electric field is decomposed in its frequency components Eν, τ2 = (2h2)/c0 is the time needed 
for all frequencies to travel a distance 2h2 and ω  = 2πν is the light angular frequency. It is important 
to note that the time τ2 becomes frequency dependent if the light does not propagate in vacuum as the 
propagation constant becomes β(ν) = n(ν)⋅k, where n(ν) is the refractive index. In this case, equation 
(4-11) is not valid anymore. This point will be discussed in section 4.2.4 with the introduction of the 
group velocity in dielectric materials. For the test signal, a similar expression is obtained with 
Etest(t) = Es(t+τ1)/2 where τ1 = (2h1)/c0. Small algebraic manipulations show that the interference 
signal I(h1,h2) is 

( ) ( ) ( )( )( )1 2, 1 Re
2
sII h h I τ γ τ= = +  (4-12) 

and only depends of the factor τ = τ2−τ1. The factor difference of 4 between equations (4-10) and 
(4-12) is due to the beam splitter. 

The typical normalized interferogram 2I/Is = 1+Re(γ) is shown in Fig. 4-3b. We observe a maximal 
signal for τ = 0 with constructive interference. Then the signal drops symmetrically and the first 
destructive interferences occur at a distance mismatch of / 2λ  (the factor 2 is due to the back and 
forth travel distance). Then other constructive and destructive interferences are observed but with a 
decreasing amplitude |γ|. Side-lobes are also observed and fully explained by the Fourier transform of 
the source power spectral density. For a Gaussian light source described by a Gaussian function, S(ν), 
the degree of coherence envelope |γ| is also a Gaussian function and side-lobes are totally suppressed. 

b) Phase decorrelation view 
The temporal coherence can be seen as a phase decorrelation of each frequency light component. 

As an example, a light source with only five monochromatic components of the same intensity and 
different wavelength λi is considered. 

 
Fig. 4-4 Interference amplitude for five different frequencies (thin gray lines) and 

amplitude sum (thick black line); the normalized distance corresponds to twice the 
distance divided by the average wavelength  

Fig. 4-4 shows the interference signals for each monochromatic component (thin grey lines) and 
the normalized total intensity (thick black line). The normalized distance is defined as 2 /nz z λ=  where 
λ  is the central wavelength. The interference signal for the monochromatic components is a cosinus 
with a period proportional to the wavelength. A perfect phase matching between the components is 
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observed at zn = 0 but for an increasing distance |zn|, the phase matching degrades and the partially 
destructive addition explains the modulation amplitude drop of the total intensity. 

c) Coherence time and coherence length 
The time distance τc where significant interference signal is observed is the coherence time of the 

light source. Several definitions of τc are found in the literature and the two principal ones are given 
hereafter. One possibility is to take the power equivalent width 

( ) 2c dτ τ γ τ
∞

−∞
= ∫  (4-13) 

The other way is to take from the γ(τ) function the full width at half maximum (FWHM) τ3dB or at 
1/e of the maximum τ1/e. For a Gaussian light source with FWHM spectral range of ∆ν, the relation 
between τc, τ3dB and ∆ν is 

( ) 2

0

2 ln 2 1 0.664 0.664
c c

λτ
π ν ν λ

= ⋅ ≅ ≅ ⋅
∆ ∆ ∆

 

( ) 2

,3
0

4 ln 2 1 0.882 0.882
c dB c

λτ
π ν ν λ

= ⋅ ≅ = ⋅
∆ ∆ ∆

 

(4-14) 

where λ and ∆λ are the central wavelength and the FWHM wavelength range of the source 
respectively. The detailed algebraic manipulations are found in [4-6] for τc and in appendix D for τc,3dB. 

The light source coherence length Lc is defined as the travel distance for a time corresponding to 
the coherence time, that is Lc = τc,3dB⋅c0 in vacuum. For a Gaussian light source centered at 1300nm 
with a spectral width of 40 nm, the corresponding coherence length is 37 µm. 

The spectral power density S(ν) can be obtained from the experimental determination γ(τ) by a 
Fourier transform. This spectroscopic method is widely used in the infrared and it is known as the 
Fourier spectroscopy. 

4.2.4 Propagation in dielectric materials 
A dielectric material is characterized by its refractive index n(ν) = c0/c(ν) where c(ν) is the phase 

velocity of the monochromatic light component of frequency ν. The propagation constant 
β(ν) = n(ν)⋅k is then frequency dependent and can be expressed as 

( ) ( ) ( ) ( ) ( )0 0

2n k n n
c c c
πν ω ωβ ν ν ν ν

ν
= = = =  (4-15) 

For a stationary light wave for which the electrical field function E(t) is known at a position z = 0, 
the same field at position z is given by 

( ) ( ) ( ),0 ,0 i t i tE t E t E e S eω ω
ν ν ν  = = =      

 

( ) ( ) ( ) ( ), , 0i z i zi tE t z E e e E t eβ ν β νω
ν ν

− −   = =     
(4-16) 

where the phase term φ(ν) from equation (4-6) has been omitted. 
In most cases, the spectral width ∆ν is small enough to allow a limited development at the first or  

at the second order of β around the central frequency ν0 

( ) ( ) ( ) ( )
0 0

2
2

0 0 0 2

1
2

d d
d dν ν ν ν

β ββ ν β ν ν ν ν ν
ν ν= =

≅ + − + −  (4-17) 

The group velocity vg that corresponds to the propagation velocity in a dielectric material of a light 
pulse centered at a frequency ν is defined as 
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1 1
v 2g

d d
d d

β β
π ν ω

= =  (4-18) 

and the dispersion coefficient Dν 

2 2

2 2

1 12
2 v g

d d dD
d d dν

β βπ
π ν ω ν

 
= = =   

 
 (4-19) 

The equation (4-17) can then be written as 

( ) ( ) ( ) ( )
0

0

2
0 0 0

2

g

D
v ν
πβ ν β ν ν ν π ν ν≅ + − + −  (4-20) 

where the group velocity and dispersion coefficients are defined at ν0. Since β(ν0) = k(ν0)⋅n(ν0), the 
equation (4-20) can be expressed as 

( ) ( )
0

0

2
0 0 0

2
v g

k n D v vν
πβ ν ν π= ∆ + + −  

( ) ( )0 0 0gn n nν ν∆ = −  

(4-21a) 

 

(4-21b) 

where k0 = k(ν0) and ng is the group refractive index defined from the group velocity as 

0

vg
g

cn =  (4-22) 

a) Dielectric material without dispersion 
We consider now the interference of two delayed versions of a lightwave that propagated in two 

different dielectric materials. The first lightwave traveled a distance z1 in a dielectric material 
characterized by the refractive index function n1(ν), while the second wave propagated a distance z2 in 
a dielectric material with n2(ν). We assume that both materials are not dispersive (Dν0 = 0). The two 
electric field amplitudes Ei (i = 1,2) at the interference location are given by 

( ) ( ) 02( , ) ,0 ,0i i i i ii z i ik z n
i i v vE t z E t e E t e eβ πντ− − − ∆   = =     

i

i
i

g

z
v

τ =  
(4-23) 

where τi represent the time needed for the wave to travel the distance zi (the travel distance in vacuum 
is ngzi) and i = 1, 2. The intensity signal obtained when the electrical fields E1 and E2 are superposed is 
found by noting that the factors exp(-ik0z1,2∆n1,2) are frequency independent 

( ) ( ) ( )( )( )0 1 1 2 2
1 2 1 2, 2 1 Re ik z n z n

sI z z I e γ τ τ− ∆ − ∆= + −  (4-24) 

The first difference observed by comparison with propagation in vacuum (4-10) is that delay times 
are related to the group velocity and not to the vacuum light speed (for a physical distance d in a 
dielectric material, the vacuum delay time corresponds to a travel distance of d/ng). The second 
difference is the inner exponential factor ( )( )0 1 1 2 2expie ik z n z nϕ− = − ∆ − ∆ . This phase factor changes the 
position of the constructive and destructive interference but not the interference amplitude. It is 
interesting to calculate the typical behavior of ϕ for propagation in fibers around λ = 1300 nm where 
the dispersion is null (typical value of ∆n = −0.014)  

[ ]2
,1.3 1.3 1.3 1.3

2 2 10fibre m m m mk n z n z z mµ µ µ µ
πϕ π µ
λ

−= ∆ = ∆ = ⋅  (4-25) 
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For every step of distance z = 100 µm a complete scan of 2π is performed (an interference period 
has been added). 

This effect is not fundamental for all-fiber interferometers operating at 1300 nm as the delay time is 
performed by a moving mirror in air (∆nair = 0). Nevertheless, a fixed phase factor exists due to a 
material difference between the reference and test arms as can be seen in Fig. 4-5 (simplified view of 
Fig. 4-2a). The relevant part is the optical fiber section between the positions Pte and Pt in the test arm, 
where Pte and Pfe (fiber end position in the reference arm) have the same distance from the coupler. 
The typical length of this section is several centimeters and then the constant phase factor is not easily 
obtained. 

 
Fig. 4-5 Simplified OLCR set-up 

b) Dielectric material with dispersion 
We treat now the case of propagating waves in a dispersive dielectric material, where the second 

order of development of β is required (Dν of equation (4-20) is not null). We again superpose two 
versions of the original wave that have traveled in different materials over different distances. For 
clarity, the first wave is assumed to have traveled through vacuum over a distance z1. The 
correspondent electrical field E1 is then simply 

( ) ( ) ( ) 1
1 1 1, , ikz

s sE t z E t E t eτ ν − = − =    (4-26) 

where τ1 = z1/c0. Then, the second wave is assumed to have traveled in a dielectric media of refractive 
index n(ν) over a physical distance z2 (assumed positive). The expression of the electric field E2 
includes the dispersion coefficient Dν of the material through the propagation constant β(ν) developed 
at the second order 

( ) ( ) ( ) 2
2 2, , i z

sE t z E t e β νν − =    (4-27) 

The propagation time τ2 is defined as 
02 2 / gz vτ = . Thus, the interference intensity signal I(z1,z2) is 

given by 

( ) ( ) ( )( ) ( )( )( )*
1 2 1 1 2 2, 2 2Re , , 2 1 Res sI z z I E t z E t z I γ τ= + = + �  

( ) ( )
0

2 1
1 2 2 2 1 1

0

, ( )
g

z zz z z z
v c

τ τ τ τ= = − = −  
(4-28) 

where the modified coherence function γ�  is found to be 

 ( )γ τ�  ( ) ( )*
1 1 2 2, , / sE t z E t z I=  

 ( )( ) ( )
( ) ( ) ( )22 0 0 00

01

2

2*1 , , g
iz D

vi
s s

s

d E t e E t e
I

ν
πβ ν ν ν π ν ν

πντν ν ν
 

−  + − + −  
 

 
 =
  
 

∫  
(4-29) 
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 ( )γ τ�  ( ) ( ) ( )( ) ( ) ( )20 2 00 2 0 1 0 1 021 i z i Di

s

d S e e
I

νβ ν π ν νπ ν ν τ ν ν τ ν τν ν − − −− − − − −= ∫  

 
( )

( ) ( ) ( )( )
0 1 0 2 2

2 0 0 2 10

2
2

i i z
i z D i

s

e d S e e
I

ν

πν τ β ν
π ν ν π ν ν τ τν ν

−
− − − − −= ∫  

We introduce a variables change f = ν-ν0 and then the γ�  takes the form 

 ( )γ τ�  
( )

( ) ( )
0 1 0 2 2

2 2 10

2
2

0

i i z
i z D f i f

s

e df S f e e
I

ν

πν τ β ν
π π τ τν

−
− − −= +∫  

  ( ) ( ) ( )( ) ( )022
0

i
ii f i

D D
s

e df S f U f e e e u
I

ϕ
πν τπ τ ϕν γ τ τ−= + = ∗∫

(4-30) 

where uD is the Fourier transform of UD = exp(-iπz2Dν,0f2) and 

( )
( )2

20

0

/

2

vi D z

D

v

eu
i D z

πτ

τ =
⋅

 (4-31) 

The following relations has been used to obtain the Fourier transform of UD 

( )( )2 21i f i tTF e t e
i

π π− =  

( )( )( )( ) 21 i attTF g b f a t G e
b b

π− − =  
 

 
(4-32) 

where TF means “the Fourier transform of”. Finally 

( ) ( )( )( )1 2, 2 1 ResI z z I γ τ= + �  

( ) ( ) ( )( ) ( ) ( )0 2 0 0gik z n n
De uν νγ τ γ τ τ−= ⋅ ∗�  

02 1 0/ /gz v z cτ = −  

(4-33) 

The function uD in equation (4-31) also describes the pulse broadening in dispersive dielectric 
materials [4-7]. As it can be seen from equation (4-33), the dispersion greatly modifies the interference 
response. For OLCR set-ups that operate at 1500 nm, the fiber dispersion coefficient is not negligible. 
It is necessary to compensate the dispersion produced by the fiber section between Pte and Pt (Fig. 
4-5). The function uD(τ) can be obtained from Dν and then, a deconvolution is possible by dividing 
S(ν) by UD(ν) in the frequency domain. Experimental measurement of Dν can be obtained with two 
OLCR interferogram responses for a cleaved fiber of different length. A complete dispersion 
compensation algorithm based on a similar formalism can be found in the work of A. Kohlhaas [4-8] 
for multiple localized reflectors in the test arm. 

The case of two wave components traveling in two different dispersive dielectric materials gives 
similar results. The modified coherence function γ�  can also be expressed in the following form : 
exp(−iϕ)⋅γ(τ)*u2(τ). The factor ϕ is identical to the case of non-dispersive materials (a)). The function 
u2(τ) is similar to uD(τ) defined in equation (4-31) but with ( )2 2 1 1D z D zν ν−  instead of ( )2 2D zν

 and 

2 1 2 2 1 1/ /g gz v z vτ τ τ= − = − . This indicates another way to compensate the dispersion effect in all-fiber 
OLCR, that is by using in the reference arm a piece of fiber with bigger dispersion coefficient or by 
using in the test arm a piece of fiber with opposite sign dispersion coefficient. The total effect has to 
cancel the term ( )2 2 1 1D z D zν ν− . 
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4.2.5 OLCR measurement of FBG 
We have now all the information required to derive the OLCR response of a FBG. The positions 

and physical distances are those indicated in Fig. 4-5. The spectral response to a stationary lightwave of 
a FBG at its entrance is given by the complex spectral function rfbg(ν) that can be calculated by T-
Matrix method (chapter 3, §3.1.4). The electric field Er from the reference arm on the detector is given 
by 

( ) ( ) ( )2, , rik d z
r sE t z a R E t eν − + = ⋅    (4-34) 

where Es is the source field, ( )1a ξ ξ= − , ξ and (1-ξ) are the intensity transmission coefficients of the 
coupler and R is the intensity reflection coefficient of the reference mirror. The test electric field Et is 
given by 

( ) ( ) ( ) ( )2, ti d
t s fbgE t a E t e rβ νν ν− =    (4-35) 

where the propagation constant is only developed to the first order (that is : Dν = 0) and using 
equations (4-20) and (4-21a), the following equation is obtained : 

( ) 0 0
2

g

k n
v
πβ ν ν= ∆ +  (4-36) 

As seen in §4.2.4, ∆n = (n(ν)-ng(ν)). The intensity I(z) measured by the detector is then 

( ) ( ) ( )( ) ( )( )2 2 *2Re Rer t r t dc acI z E z E E z E I I γ τ= + + = + �  

02 /z cτ =  
(4-37) 

The constant intensity factor Idc is 

( ) ( )( )dc s fbgI a RI d S rν ν ν= ⋅ + ∫  (4-38) 

The modified coherence function γ�  and the AC amplitude Iac are found to be 

( ) ( ) ( )02* 22 2 ti d k n i
ac r t fbgI d E E a Re d S r e πντγ τ ν ν ν ν∆ −⋅ = =∫ ∫�  

2ac sI a RI=  

( ) ( ) ( )02 ti d k n
fbge hγ τ γ τ τ∆= ⋅ ∗�  

(4-39) 

where hfbg(τ) is the FBG impulse response in reflection (Fourier transform of the complex reflection 
amplitude rfbg(ν)). 

The OLCR signal is defined as the interfering part of I(z), that is ( )( )ReacI γ τ� . Considering a 3 dB 
coupler (a = 0.5), a perfect reflecting reference mirror (R = 1) and neglecting the phase factor 
exp(i2dtk0∆n), the equation (4-2) is obtained. The OLCR signal is related through the grating impulse 
response amplitude hfbg(τ) to the reflection amplitude rfbg(ν) and for this reason the logarithmic scale 
representation is defined as 

( ) [ ] ( )1020OLCR OLCRI dB Log Iτ = ⋅  (4-40) 

where the factor 20 takes account for the amplitude signal. 
The resolution in the fiber is defined as half the coherence length in the fiber 

( )02
c

r
LL
n ν

=  (4-41) 
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For a Gaussian light source centered at 1300nm with a spectral width of 40 nm propagating in a 
single mode fiber with n = 1.45, we find a resolution of Lr = 12.8 µm. 

4.3 New OLCR set-ups 
In this work, two OLCR set-ups have been realized that measure simultaneously the amplitude and 

the phase OLCR signals of FBG in the 1300 nm range. Both exhibits very high S/N only limited by 
the fiber Raleigh scattering. The essential difference between the two set-ups concerns the phase 
reference measurement method. In the first design, a reference laser at a wavelength different from the 
FBG wavelength propagate at the same time in the interferometer. The laser interference phase signal 
defines a distance reference where the OLCR phase is free of drifts (wavelength multiplexing scheme). 
In the second design, the reference laser is at the Bragg wavelength of the grating. In this case, the 
difference between the laser phase and the OLCR phase varies slowly with the OPLD and is free of 
drifts (time multiplexing). The time multiplexing method allows OPLD samplings as large as several 
tens of microns. 

We first present the time multiplexing design. The following sections present the details on how to 
measure complex OLCR response, with an emphasis on the static method used in our set-ups, the 
balanced detection scheme, the polarization problem in all-fiber interferometers. The wavelength 
multiplexing design is then described. Finally, a comparison of the two set-ups is presented. 

4.3.1 Time multiplexing OLCR design 
Fig. 4-6 presents the OLCR scheme with the time multiplexing of the broad-band source and the 

reference laser. The signals under investigation are the OLCR amplitude and the phase difference 
between the OLCR signal and the reference laser phase. 

 
Fig. 4-6 Time multiplexing OLCR set-up : low coherence light source (SLD), 

tunable laser (TL), optical switch (OpS), circulator (C), coupler (CPL), 
piezoelectric plate (PZT), mirror (MIR), translation stage (TS), polarization 

controller (POLA), test FBG (FBG), fiber end in index matching fluid (IMF), 
attenuator (A), detectors (D), voltage difference module (VD) and lock-in 

amplifier (L-I) 

The major feature is a time multiplexing by the optical switch of the low coherent light source and 
of the laser source operating at the same wavelength. The SLD is centered at 1318 nm and has a 
bandwidth of 40 nm FWHM corresponding to a coherence length LC = 12.8 µm in the fiber (single 
mode telecom fiber). The laser source is tunable and its wavelength is set to the Bragg wavelength 
λB = 2neffΛ, where neff is the effective reflective index and Λ the FBG period. The 3 dB coupler splits 
the light to equally illuminate the reference and test arms. The reference arm includes a mirror (MIR) 
placed on a 25 cm translation stage used to scan the OPLD. The phase of the reference signal is ramp 
modulated by a piezoelectric plate over the OPLD of two fringes at a frequency of f = 178 Hz. The 
lens couples the light beam from fiber to free space and back to the fiber. The test arm contains the 
FBG under test and a polarization controller that optimizes the interference pattern. The fiber end of 
the test arm is placed in an index matching fluid to avoid unwanted light reflections. A balanced 
detection scheme is used, including a coupler, a circulator, an attenuator, two detectors and a voltage 
difference module. For a given mirror position, the interfering part of the total intensity (OLCR signal) 
is a 2f−sinus and the constant part of the total intensity signal is cancelled by the balanced detection. 
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The dual-phase lock-in amplifier extracts the amplitude and the phase information directly for the 
OLCR and the laser signals. The time interval between the laser and the OLCR phase measurements is 
54 ms thus limiting phase drifts to below π/100. The measurement chronology for each OPLD is 
presented in Fig. 4-7. OPLD discretization from 1 to 200 µm have been used depending on the 
required resolution. 

 
Fig. 4-7 Measurement chronology for the time multiplexing OLCR set-up 

4.3.2 Measurement principle 
Small perturbations (e.g. temperature variations) in both interferometer arms modify the optical 

path length difference (OPLD) and determine the phase drifts. Typical variations of 2π in the OLCR 
or laser phase signal are possible in a few seconds. For complex OLCR measurements, these phase 
drifts have to be either limited by very fast measurements or compensated by another reference laser 
signal when the measurements are slow. Two main complex OLCR measuring methods have been 
studied : 

− Dynamic method : moving the mirror at constant speed produces a Doppler frequency 
used to measure the real part amplitude; the imaginary part is calculated by an Hilbert 
transformation and subsequently the complex response is obtained [4-2] 

− Static method : for a given mirror position, the OPLD is ramp modulated over a 
multiple of the interference period producing a quasi sinusoidal signal (Fig. 4-8); a dual-
phase lock-in amplifier then directly derives the amplitude and phase signals 

Both methods have their own advantages and drawbacks : 
− Dynamic method : the main advantages are the high speed (e.g. 42-m/s with rotating 

mirror cubes [4-9]) and the small phase drifts; on the other hand, the signal to noise 
ratio (S/N) is limited by the shot noise of the detectors, the phase reconstruction using 
the Hilbert transform is not optimal for small signals and a constant mirror speed is 
needed; moreover, a high precision reference distance and an OPLD resolution that 
fulfills the Nyquist criteria (under λ/2) are required 

− Static method : the main advantages are the high dynamic range (only limited by the 
fiber Raleigh scattering around –120 dB) and an OPLD resolution that is not limited by 
the Nyquist criteria as only the phase difference between the laser and the OLCR phases 
is measured, which is slowly varying with the OPLD; on the other hand the 
measurement is slow (3 min/mm in our set-up) due to the ramp modulation process at 
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each position (150 Hz maximal frequency for piezoelectric plates) that limits the 
measurement speed and then requires to compensate the important phase drifts 

The static method has been chosen for its high dynamic range that enables the measurement of 
weak FBGs. Fig. 4-8a shows the interference amplitude for the OPLD, ζ. The period is given by half 
the low coherence light source wavelength λ/2. For a given mirror position ζ (stationary condition), 
the OPLD is ramp modulated at frequency f as seen in Fig. 4-8b. The time dependent signal measured 
by the detector (Fig. 4-8c) is a piecewise reconstructed sinus function obtained by concatenation of the 
interference signal over a period. The amplitude α(ζ) corresponds to the OLCR envelope amplitude 
and the phase difference β(ζ) between the ramp excitation and the signal minima gives the OLCR 
phase. The transition time between two ramps (between dotted and dashed lines) explains induced 
signal distortions that limit the modulation frequency. The reference laser signal is similar but the 
amplitude is nearly constant over the measurement range due to the much longer coherence length. 

 
Fig. 4-8 Signal generation for OLCR set-ups with static method 

4.3.3 Balanced detection scheme 

 
Fig. 4-9 OLCR set-up with balanced detection 

The interference signals (AC) are very small compared to the constant part (DC) and amplitudes 
between −50 to −120 dB are expected for FBGs. Electronic filtering of the DC signal is not optimal as 
it adds a lot of noise that reduces the S/N. A balanced detection scheme is then preferred where the 
DC signal is differentially cancelled. Moreover, the balanced detection scheme within our set-ups (Fig. 
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4-9) not only suppresses the DC part but doubles the AC part at the same time. In order to discuss 
such point, Fig. 4-9 presents the principal parts of an OLCR set-up where the reference system has 
been omitted. A circulator is placed in the source arm and the returning signal in this arm is then 
redirected to the detector. An attenuator is used on the other arm to compensate the insertion loss of 
the circulator. 

This balanced detection scheme is based on the properties of the coupler. For an input signal of 
amplitude E, the outgoing symmetric Es and anti-symmetric Ea signals (Fig. 4-10a) exhibit a phase 
difference of π/2 for the same OPLD [4-10]. 

 
Fig. 4-10 Fiber coupler principle (a) and electric fields pertinent for balanced 

detection (b) 

Considering the reference signal Er and test signals Et (Fig. 4-10b), the total signals in the source 
arm Es and in the detection arm Ed are given by 

( )/ 21
2

sii
s r tE E E e e ϕπ−= + ⋅ ⋅  

( )/ 21
2

dii
d r tE E e E e ϕπ−= ⋅ + ⋅  

(4-42) 

where ϕ1,2 is a phase dependent factor that contains the propagation in the source and detection arm 
respectively. The corresponding intensities are 

( ) ( )* / 21 Re
2

i
s r t r tI I I d E E e πν= + + ⋅ ⋅∫  

( ) ( )* / 21 Re
2

i
d r t r tI I I d E E e πν −= + + ⋅ ⋅∫  

(4-43) 

We observe that the DC intensity is identical but that the AC intensity part has a π phase factor 
difference. This means that when Is shows a constructive interference, Id shows a destructive 
interference. The intensity difference is obtained by using the relation eiπ = −1 

( ) ( ) ( )/ 2 * / 2 * / 2 *Re Re 2Rei i i
diff s d r t r t r tI I I e d E E e d E E e d E Eπ π πν ν ν− −= − = ⋅ − ⋅ = ⋅∫ ∫ ∫  (4-44) 

For a given mirror position, the difference intensity Idiff is the real part of the AC interference signal 
that would be obtained directly with Er and Et for a mirror λ/4 away from its current position. 
Experimentally, this means that the effective mirror position has a constant λ/4 offset. 

As it concerns this detection, another point must be discuss. The S/N is strongly related to the 
detector noise that depends on the total optical power of the incoming light [4-11]. In our set-ups, the 
total light power is reduced in the reference arm by the in- and out-coupling (-50 dB at least) and in the 
test arm by the FBG itself, allowing by this lower detector noise. Moreover, the chosen balanced 
detection scheme improves the S/N [4-12]. The observed noise limit in our measurements is about 
−120 dB for FBGs. This level corresponds to the Rayleigh backscattering in telecom fibers [4-13]. 
Experiments conducted on cleaved fibers as sample have shown lower S/N several centimeters after 
the fiber end position around −140 dB. 
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4.3.4 Polarization effects 
The polarization state of the light traveling in optical fibers is modified by fiber bending, 

geometrical perturbations and material inhomogeneities. The main effect is a changement of the 
polarization state. If the rotation angle is different for the reference and test signals, a reduction of the 
fringe visibility is observed due to the partial superposition of orthogonal polarization states. The 
polarization controller (POLA) placed in the test arm modifies the polarization state angle of the test 
signal in order to optimize the polarization matching with the reference signal. If θ is the polarization 
angle difference between the reference and the test lights at the detector input, the measured AC 
intensity signal is reduced by a factor cos(θ) (see Appendix E for more details). The polarization 
controller is manually set to obtain θ = 0. 

The polarization effect is very important when an absolute measurement of the OLCR signal is 
required; in fact, temperature changes or vibrations can modify θ and then reduced the effective 
interference amplitude. Finally, we remark that other polarization coherence effects can be neglected 
for non-polarized light due to the initial lack of polarization cross-correlation. 

4.3.5 Wavelength multiplexing OLCR design 
The wavelength multiplexing OLCR design is presented in Fig. 4-11. 

 
Fig. 4-11 Wavelength multiplexing OLCR set-up : wavelength division 

multiplexer (WDM), cleaved fiber end (PC) 

The low coherence light source around 1318 nm and the reference laser around 1550 nm are 
launched together in the reference and test arms. The FBG (in the 1300 nm range) has very low 
reflectivity at the laser wavelength, and then another laser reference point in the test arm is required 
and a cleaved fiber end behind the grating is used for this purpose. The distance between the FBG and 
the PC has to be as small as possible to limit the laser phase noise (i.e. the interference of lights emitted 
at different time). The laser wavelength is calibrated with a wavemeter to improve the distance 
accuracy (relative distance uncertainty less than 10-6).  

 
Fig. 4-12 Measurement chronology for the wavelength multiplexing OLCR set-up 
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The cross talk between the low coherence and reference laser signals is reduced by using 
1310/1550 nm wavelength division multiplexers with isolation greater than 45 dB. The remaining cross 
talk disappears with the different levels used in the balanced detection of both signals. Spectral 
variation of the laser and broadband sources are kept below 2 pm with temperature control. Two dual-
phase lock-in amplifiers extract amplitude (Ioclr, Ilaser) and phase (ϕolcr, ϕlaser) of the OLCR and laser 
signals. Ix and ϕx are measured at each mirror (MIR) position. The perfect symmetry of the set-up 
allows measuring FBG’s at 1550 nm with a matching broadband source and a laser source at 1310 nm. 
The OPLD is sampled in order to fulfill the Nyquist criteria for the reference laser phase. The absolute 
distance without phase drifts for the OLCR phase is then calculated (i.e. OPLD = λlaser⋅ϕlaser/2π). 
From the absolute distance, a linear resampling is applied to the OLCR amplitude and phase. 

The measurement chronology is presented in Fig. 4-12. A small time delay of 4 ms is observed 
between both phase measurements. 

4.3.6 Discussion of different OLCR designs 
The first aspects concern both designs. The laser wavelength is used as phase reference and thus an 

acurate knowledge of the wavelength and its stability  is essential. The tunable laser used in the time 
multiplexing set-up guaranties a wavelength stability better than 1 pm and the DFB laser used in the 
wavelength multiplexing set-up is temperature stabilized to ensure the same stability. A wavemeter has 
been used in parallel to track the exact wavelength position and eventual drifts (laser wavelength drifts 
smaller than 0.1 pm were observed). The thermal stability of the test FBG is fundamental as the 
measurement time goes from several minutes to several hours. Temperature changes in the test FBG 
modify its spectral properties (in first approximation a frequency shift) that are seen in the OLCR 
measurement by a phase difference slope modifications due to a different local Bragg condition. 

The time multiplexing design shows several advantages over the wavelength multiplexing scheme : 
− The laser reflective reference is the FBG itself and thus cancels completely the laser 

phase noise problem encountered with the cleaved fiber end as the reference 
− The phase difference is ranged in tens of radians compared to the millions of radians 

range of the phase itself for the same scan distance (e.g. a few centimeters) 
− The sampling is not limited by the Nyquist condition and this reduces considerably the 

measurement time (several minutes instead of several hours) and the amount of data 
(factor 10 to 100) 

− The single wavelength operation divides by two the number of optical and electronic 
components (adding on the other hand an optical switch) and guaranties the perfect 2π 
modulation for both OLCR and laser phase signals 

The wavelength multiplexing exhibits nevertheless interesting features : 
− The wavelength symmetry enables measurements of FBG in the 1310 and 1550 nm 

range by simple source exchange 
− For a dynamic measurement configuration (§4.3.2), the laser signal can be used directly 

as reference signal for the lock-in amplifier and then the phase difference is directly 
extracted without any other operation (accurate constant mirror velocity is required) 

− The time delay between the laser and OLCR phase measurement is very small and can 
either be totally suppressed if the voltage difference of both lock-in is measured, 
reducing the marginal phase drifts well bellow the π/100 encountered for the time 
multiplexing design 

We want now to discuss the minimal sampling distance required for FBGs OLCR measurements 
when the OLCR phase is obtained from the difference with the laser reference phase. The phase 
difference change ∆φ for two different wavelength λ1 and λ2 over the same distance d is given by 

1 2 1 2

2 2 2d d dπ π π λφ
λ λ λ λ

∆
∆ = − =  (4-45) 

where ∆λ  = λ2-λ1. The following table gives the minimal distance d2π for which a complete 2π phase 
change is obtained for λ1 = 1310 nm. 
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λ2 [nm] ∆λ [nm] d2π [µm]
1310.1 0.1 17’161 
1311 1 1’716 
1320 10 172 
1410 100 17 
1550 240 8.5 

 
When measuring the phase difference between the laser and OLCR signals, the sampling has to be 

half the minimal distance d2π to fulfill the Nyquist criteria. We observe that the wavelength 
multiplexing design could also be used in the difference phase mode but with smaller sampling 
intervals and an independent distance measurement. In this discussion, we have neglected the phase 
changes introduced by the test FBG itself. For homogeneous FBGs, additional π shifts in the impulse 
response phase are observed due to global reflections at the grating interfaces and they are spread in 
the OLCR measurement over the broadband light source coherence length by convolution. For 
chirped grating, the Bragg condition change is usually smaller than 10 to 20 nm and then the 
corresponding d2π remains under 100 µm. The typical OPLD sampling distance (that is twice the 
incremental change of the mirror position) used in time multiplexing design was 20 µm, corresponding 
to 10 µm mirror step. Several experiments have also been conducted with 1 µm mirror steps for 
precise OLCR measurements and 100 µm for fast measurements. 

4.3.7 Time multiplexing design in OFDR use 
The time multiplexing design OLCR has also been used to measure directly the complex spectral 

response of FBGs. To achieve this, the mirror is placed at a position corresponding to an inner point 
of the grating in order to have a strong low coherence signal. Instead of moving the mirror to scan the 
OPLD, the light frequency is scanned by the tunable laser. The low coherent signal phase is used to 
compensate the phase drifts. This measurement method is known as optical frequency division 
reflectometry (OFDR). The obtained complex signal corresponds to the complex reflection amplitude 
r(ν) and not to the reflection intensity. For this reason, the dynamic range in dB is twice the one 
obtained with a direct intensity measurement. The dynamic range is nevertheless limited by the 
spontaneous light emission of the laser source. For the tunable laser we have used, the spontaneous 
light emission is under −60 dB. This dynamic limitation can be overcome for an amplitude 
measurement by placing the mirror at a position where the low coherence signal is canceled as the 
same will occur with the spontaneous part of the laser light, but the phase signal is lost in this case 

4.3.8 Transmission impulse response OLCR set-up 
The transmission impulse response (Fourier transform of the amplitude transmission spectrum) can 

be measured with an OLCR based on a Mach-Zender interferometer. Fig. 4-13 present a time 
multiplexing OLCR design set-up that use the same components as the set-up used for reflection 
measurements (at the exception of the second 3 dB coupler). The attenuator in the balanced detection 
has been omitted but it can be added if the second coupler shows a splitting ratio that is not exactly 
50/50 in intensity. 

 
Fig. 4-13 OLCR set-up for transmission measurement 



 Chapter 4 

 4-19 

4.4 Reconstruction process 
This section presents the treatment applied to the measured OLCR data to reconstruct the grating 

complex coupling coefficient. We limit the study to the time multiplexing case. The first operation 
produces the slowly varying complex OLCR response (amplitude and phase). The second step is the 
Fourier transform and the deconvolution from the interferometer signature to obtain the complex 
spectral response of the grating. The complex coupling coefficient is then calculated by layer-peeling 
(chapter 3, §3.3.2). 

4.4.1 Complex OLCR signal reconstruction 
The OLCR measurement consists of four signals : the low coherence light interference amplitude 

and phase (Alc and φlc) and the laser interference amplitude and phase (AL and φL). Only the phase 
difference ∆φ = φlc − φL is important since all interferometer phase drifts are canceled in this signal. 
The OPLD, ξ, is determined directly by the translation stage control system with an accuracy of 
100 nm and an absolute error after several centimeters bellow 1 µm (stepping-motor encoder error). 

The laser signal amplitude is supposed to be constant over the scan range due to the large 
coherence length of the laser source. Nevertheless, the interference signal shows a parabolic behavior 
due to the coupling variation with the mirror position in the reference arm. The same variation is also 
observed for the low coherence signal. To correct this effect, a modified low coherence amplitude 
AOLCR is calculated by dividing the low coherence amplitude by a parabolic fit of the laser amplitude 
AL,2nd order 

,2
/ ndOLCR lc L order

A A A=  (4-46) 

The slowly varying complex OLCR signal f(ξ) is then defined as 

( ) ( ) ( )( )expOLCRf A iξ ξ φ ξ= ⋅ − ⋅ ∆  (4-47) 

4.4.2 Complex FBG spectral response calculation 
The complex reflection amplitude rfbg(ν) is calculated from the slowly varying complex OLCR 

response through a FFT algorithm after a deconvolution from the broad-band spectral power density 
S(ν). As the OLCR measurement is not calibrated, a subsidiary calibration of rfbg(ν) is required, using 
an independent transmission measurement of the grating. 

a) Fourier transform performed with the FFT algorithm 
The inverse Fourier transform is performed with the FFT algorithm. Nevertheless, the spectral 

resolution possible with such kind of algorithm strongly depends on the OPLD range. For this reason 
we artificially increase the ξ range by padding zeros after the last measured point (a resolution of 
3.6 pm is found at 1309 nm with an OPLD range of 52 cm). This zero padding is equivalent to 
consider the OLCR signal equal to zero for values under −120 dB. The total number of points is set to 
a power of two for optimal FFT algorithm use. The Fourier transform of the slowly varying OLCR 
function produces a frequency shifted spectral response. The frequency shift corresponds to the laser 
frequency. 

b) Deconvolution process 
The complex slowly varying OLCR function f(ξ) is related to the grating complex spectral response 

r(ν) and the effective broadband power spectral density S(ν) that includes some spectral filtering of the 
interferometer 

( ) ( ) ( ) ( ) ( )0 02 / 2 /lcii c i c
OLCRf e A e d S r eφ ξπν ξ πνξξ ξ ν ν ν⋅⋅ −⋅ = ⋅ ⋅∫∼  (4-48) 
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where the symbol “∼” is used in the meaning of “proportional to” and ν0 is the laser frequency. The 
frequency shifted inverse Fourier transform F(ν) of f(ξ) is proportional to S(ν)⋅r(ν). The 
deconvolution of the interferometer signature is in the frequency domain a simple division, i.e. 
F(ν)/S(ν). The function S(ν) is obtained when the FBG is replaced by cleaved fiber end, for which the 
reflectivity is constant over the light source frequency range. We can then write the following relation 

( )
( )( )

( )( ) ( )
1

1
fbg

nc
cleaved fiber

FT f
r r

FT f
ξ

ν ν
ξ

−

−
=∼  (4-49) 

where rnc represents the FBG reflection spectral response that is not calibrated and FT means “Fourier 
transform of” and FT−1 “inverse Fourier transform”. 

We have to notice that S(ν) is supposed to be a real function and that the remaining dispersion, 
which can appear in the interferometer is assumed to be very small and thus neglected. For this reason 
we use the absolute value of FT-1(fcleaved fiber(ξ)). In the case where the dispersion cannot be neglected, a 
more complicated deconvolution is required, based on equations (4-33). 

c) Normalization process 
Finally, it remains to normalize the complex reflection amplitude. We have chosen not to calibrate 

the OLCR measurement as the polarization rotation drifts makes such calibration hard to maintain. We 
prefer an independent measurement of the FBG transmission intensity with the tunable laser to 
determine the maximal reflection intensity Rfbg,max  

( ) ( )
( )( ) ,

nc
fbg max

nc

r
r R

Max r
ν

ν
ν

= ⋅  (4-50) 

As long as the induced refractive index modulation of the grating is not modified (e.g. high 
temperature), the impulse response amplitude at the entrance |h(τ=0)| remains constant for different 
environmental conditions of temperature and strains. This property allows to perform a single 
calibration of |h(0)| in a given state of strain and temperature to calibrate the grating in other 
environmental states. 

4.4.3 Complex coupling coefficient reconstruction 
We have seen in chapter 3 that the complex coupling coefficient of the grating can be reconstructed 

from the complex spectral response with a layer-peeling method. The FBG is divided in several layers 
of physical thickness ∆ where the grating is assumed uniform and represented by a single complex 
reflector with reflectivity ρ. The required spectral range for the layer-peeling is directly related to the 
thickness ∆ 

2
πδ ≤
∆

 (4-51) 

where δ = β−βd is the detuning wavelength and βd is an arbitrary design wavelength (usually set to the 
Bragg wavelength). The smaller the layer is, the larger the required spectral range is and the smaller the 
reconstruction errors will be. For βd = 1309 nm and ∆ = 5 µm the spectral range goes from 1252.8 to 
1371.2 nm. The relation between the reflectivity ρ and the local complex coupling coefficient qj is 
given by 

( )
*

tan j
j j

j

q
q

q
ρ = − ∆  (4-52) 

From the starting reflection amplitude r1(δ)=r(δ), the grating is reconstructed in an iterative way. At 
each step, ρj for the first layer of the remaining structure at the step j is calculated and a new reflection 
amplitude rj+1(δ) is calculated for the structure without the layer j (peeled off)  
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(4-53) 

where rj(m) is the discrete form of rj(δ). The number of points N for r(ν) in the range of δ has to be 
greater than the number M of reconstructed layers (M ≥ N). 

The reconstruction of the grating complex coupling coefficient is then conducted with the 
following procedure : 

− The layer thickness ∆ and the design wavelength λd are chosen, thus defining the 
detuning range 

− The complex FBG spectral response is restricted to the detuning range 
− The M complex reflection coefficients ρj are calculated 
− The M complex coupling coefficient amplitude and phase are deduced from the ρj 

We have seen in chapter 3 (§3.5.2) that the complex coupling coefficient is not enough to deduce 
all the FBG parameters as there are three distributions : the refractive index modulation ∆nac, the 
physical period Λ (or the period chirp θ) and the refractive index chirp ∆ndc. 

4.5 Reconstructed FBG 
This section presents the reconstruction results obtained on a nearly homogeneous grating, a FBG 

with local pre-exposure that induce index chirp and finally the case of a blazed grating that exhibits 
insertion loss and then requires to use the modified layer-peeling method proposed in chapter 3, in 
section §3.3.2. 

4.5.1 Homogeneous FBG 
The FBG has been inscribed in an H2-loaded SMF28 compatible fiber with a 193 nm ArF excimer 

laser through a 902.9 nm−pitch phase mask over a length of 5 mm. For an ideal homogeneous grating, 
∆nac, ∆ndc and dθ/dz are constant. In the reality, ∆nac and ∆ndc could show some small variations due 
to laser beam inhomogeneities. Fig. 4-14 presents the spectral response of the grating (intensity) 
measured with a tunable laser and simulated curve with the best approaching homogeneous grating 
parameters. We can see an important difference between the curves, probably indicating the presence 
of non-homogeneities in the grating. 

 
Fig. 4-14 Measured reflection intensity (circles) and spectral fit with the most 

approaching homogeneous grating 
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The OLCR measurement of the grating has been performed from both sides. Fig. 4-15 shows the 
results from one side measurement where A is the OLCR amplitude and ∆φ the difference between 
the OLCR phase and the laser phase. The OPLD sampling interval is 20 µm, the scan speed is 
3 mm/min and the laser wavelength is λB = 1309.33 nm. 

 
Fig. 4-15 OLCR amplitude (a) and phase difference between OLCR phase and 

reference laser phase at λB (b) 

The S/N for the amplitude signal is −120 dB. The phase difference ∆φ is nearly linear by parts as 
expected for a homogeneous grating and the slope is close to zero due to the perfect matching of the 
laser wavelength to the Bragg condition. It has to be noticed that the range of ∆φ is less than ten 
radians, as compared to the range of the OLCR phase, which exceeds millions of radians for the same 
OPLD.  The FBG entrance and output positions are located at OPLD1 = 0.13 and 
OPLD2 = 15.6 mm, respectively. Hence a grating length of ∆OPLD/(2ng)=5.33 mm is obtained using 
a group refractive index of ng =1.45. Inside the grating, the OLCR signal is mainly due to a single 
reflection. The small variations observed are due to some UV-laser beam inhomogeneities. Behind the 
output, the FBG acts as a Fabry-Perot and the signal is due to multiple reflections. Each zero in the 
reflection amplitude  (Fig. 2a) corresponds to a π shift in the phase difference (Fig. 2b). A zero is 
observed in the OLCR amplitude inside the grating region at 14.48 mm. This effect is expected by 
theory for strong FBGs [4-14]. At this position, the OCLR phase difference has a 2π shift due to noisy 
data that limits the unwrapping process. 

The complex spectral reflectivity r(ν) is obtained from the OLCR measurement with the following 
parameters for the data processing : zero padding to an OPLD of 52 cm and a spectral resolution of 
3.6 pm at 1309 nm. The transmission intensity measurement of the grating with the tunable laser gives 
a maximal reflection intensity of 87.9 ± 1 %. The layer-peeling algorithm has been applied on the r(ν) 
function using the following parameters : 2000 layers of 5µm with λB as design wavelength, an 
effective refractive index of 1.45. This corresponds to a spectral range between 1252.8 and 1371.2 nm 
with 36161 points out of the 220 from the FFT. The reconstruction length is 10 mm. The maximal 
reflectivity has been adjusted to minimize the amplitude difference ∆q from both sides. A value of 
87.5 % was found, consistent with the transmission measurement. 
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Fig. 4-16 Coupling coefficient amplitude (a); phase (solid line) and  fit (dashed 

line) (b); differences between reconstructions from both sides (c) 

Fig. 4-16 presents the reconstructed coupling coefficient amplitude (a) and phase (b) from one side. 
Fig. 4-16c shows the amplitude and phase differences between reconstructions from both sides. The 
longitudinal resolution is estimated at 20 µm from the smallest variations observed in both 
reconstructions. The grating limits (circles in Fig. 4-16) are found in the phase response where the 
phase variation is nearly asymptotic. The reconstructed grating is 5.33 mm long as expected and has an 
average coupling amplitude of 3.3 cm−1 (∆nAC = 1.25⋅10-4) with 25 % variations. The coupling 
coefficient amplitude behind the grating remains at 0.1 cm-1 due to small propagating losses in the 
cladding that are not considered in the reconstruction algorithm. The coupling coefficient phase is 
limited to ± 0.3 radians, indicating small deviations from design wavelength. The dashed line in Fig. 3b 
corresponds to average change in ∆ndc. Other variations of Arg(q) are seen in the phase reconstruction 
but they are not completely understood. It has to be noted that these variations are not artifacts as they 
disappear in the phase difference ∆Arg(q) from both sides (Fig. 3c). The amplitude difference ∆|q| 
from independent reconstruction of both sides is under 3 % of the average coupling coefficient 
amplitude. This indicates small OLCR measurement and reconstruction errors. 
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Fig. 4-17 Reflection intensity (a), delay time (b) calculated from the reconstructed 
coupling coefficient (solid line) and directly measured with a tunable laser (circles) 

The T-matrix method is used to compute the reconstructed complex spectral response from the 
obtained coupling coefficient. A direct measurement of the complex spectral reflectivity of FBG is 
performed with the same set-up used in an OFDR configuration (optical frequency domain 
reflectometry, §4.3.7). In this case the laser frequency is scanned while the mirror has a defined 
position. The phase difference between the laser and the low coherent light source compensates the 
phase drifts in the same way as in the OLCR configuration. Fig. 4-17 shows both calculated and 
measured spectral responses. A good agreement is observed, confirming the validity of the entire 
reconstruction process. 

4.5.2 Non-homogenous grating 
The grating has been inscribed in a photosentive fiber (Spectran Photosil) with a 193 nm ArF 

excimer laser. The writing process consists of two irradiation steps : 
− five localalized homogeneous irradiations through a 780 mm-pitch amplitude mask 

(2000 pulses) 
− an homogeneous FBG exposure through a 902.9 nm−pitch phase mask over a length of 

5 mm (500 pulses) 
The FBG reflection intensity and time delay are presented in Fig. 4-18. 
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Fig. 4-18 Reflection intensity and time delay of the non-homogeneous FBG and 

amplitude / phase masks parameters 

The first illumination added a constant index change ∆ndc to the exposed regions. The second 
exposure through a phase mask produces two different index modulation amplitudes ∆nac1,2 due to the 
modified sensitivity in pre-exposed regions (Fig. 4-19a). Fig. 4-19b presents schematically n(z) where 
the pre-exposed region exhibits higher ∆ndc(z) and lower ∆nac,2. 

 
Fig. 4-19 Fiber photosentivity curve (a) and FBG refractive index function (b) 

The OLCR measurement of our test FBG has been performed from both sides. Fig. 4-20 shows 
the results for one side where A is the OLCR amplitude and ∆φ the difference between the OLCR 
phase and the laser phase. A sampling interval of 20 µm in air and a scan speed 3 mm/min have been 
used. The amplitude S/N is −120 dB. The matching of the laser wavelength with the Bragg wavelength 
limits ∆φ to a 10 radians range. The grating entrance and output are marked with vertical dotted lines. 
The grating length is 5.13 mm (half the measured OPLD divided by the fiber group refractive index 
ng = 1.45). The FBG regions that have been pre-exposed exhibit lower A and a lower ∆φ slope. This is 
fully explained by the fabrication process. In the pre-exposed region the modulation amplitude ∆nac,2 is 
lower than ∆nac,1, (lower photosensitivity) and this results in lower local reflectivity. On the other hand, 
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the added index offset ∆ndc leads to a locally higher ng, resulting in a lower slope for ∆φ. The positive 
and negative slopes are given by the particular choice of the laser wavelength, that resides between the 
two local Bragg wavelengths. The amplitude drop at 7.3 mm in A and ∆φ is probably due the 
fabrication process (small remaining coating part or local laser beam inhomogeneity). Small variations 
of A and ∆φ in the grating can also be explained by UV-laser beam inhomogeneity. At the end of the 
grating the amplitude drops by 10 dB and then slowly decreases. The pre-exposure process suppresses 
the typical oscillations due to the global FBG Fabry-Perot effect observed in homogeneous FBG. 

The reconstruction process uses the same parameters we have seen for the homogeneous grating 
reconstruction, except for the design wavelength (λd = 1309.25) and the maximal reflection intensity 
(52 ± 1 %) obtained from an independent measurement. Fig. 4-21 presents the reconstructed coupling 
coefficient amplitude (a) and phase (b) from one side. The grating limits (circles) have been defined by 
the phase response where the slope strongly increases. The reconstructed grating is 5.13 mm long as 
expected. The amplitude in the pre-exposed region is between 140 and 160 m-1. Based on equation (2), 
we evaluate for ∆nac,2 values ranging from 0.70 to 0.8⋅10-4. The local amplitude variations are probably 
due to inhomogeneities in illumination during FBG fabrication. The amplitude level in the other 
regions is between 210 and 240 m-1 (∆nac,1 between 1.05 and 1.21⋅10-4). The phase slope gives 
information about ∆ndc and the grating period deviation from the design period. Considering a 100 % 
fringe visibility, a 451.37 nm grating period is obtained from regions only exposed to the phase mask. 
This value is 0.08 nm smaller than half the phase mask period. This effect is expected as the fiber is 
stretched during inscription. The grating period is constant along the grating and then, the ∆ndc is 
found from pre-exposed region. A value of 5.5 to 6.0⋅10-4 is calculated and ∆ndc is around five-time 
∆nac, compatible with the number of pulses used in both exposures, 2000 and 400 respectively. 

 
Fig. 4-20 OLCR amplitude (a) and phase difference between OLCR phase and 

reference laser phase at λB (b) 

Fig. 4-21c is a close-up of the amplitude between the dotted vertical lines. The strong defect 
observed in the grating enables us to estimate the axial resolution to a value below 20 µm. Fig. 4-21d 
shows the amplitude and phase differences between reconstructions from both sides. The amplitude 
difference ∆|q| and phase difference ∆Arg(q) from independent reconstruction of both sides are 
below 5 % of the average coupling coefficient amplitude and phase signal respectively. This indicates 
small OLCR measurement and reconstruction errors. A small slope in the angle difference can be 
explained by a temperature difference between the measurements. 
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Fig. 4-21 Coupling coefficient amplitude (a); phase  (b); expanded view of 

coupling coefficient amplitude (c); differences between reconstructions from both 
sides (d) 

4.5.3 Fiber Bragg grating with excess loss 
A preliminary experiment has been performed on a nearly homogeneous FBG that presents non-

coincident reconstruction from both sides. The reconstruction problem is assumed to come from 
losses that occur inside the grating. 

The FBG presented in this section has been fabricated with a CW−UV laser at 244 nm in a 
Spectran Photosil single mode fiber. The peak resonance Bragg wavelength λb is 1308.75 nm, the 
grating length is about 12 mm. The grating is assumed to have a small tilt as important transmission 
cladding losses are observed for wavelength under the Bragg wavelength. 

In first approximation, the losses are assumed as a frequency independent excess loss E. Then, the 
equation that relates the reflection and the transmission amplitudes R and T, respectively, becomes 

( ) ( ) 1R T Eλ λ+ = −  (4-54) 

where λ is the wavelength. 
A transmission intensity measurement has been conducted and the ratio between the minimal and 

maximal transmission intensity is calculated. A value of 0.25 is obtained for Tmin/Tmax. A schematic 
view of the spectral intensity parameters is presented in Fig. 4-22. 
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Fig. 4-22 Schematic view of the spectral intensity parameters 

An OLCR measurement has been performed from both sides of the grating with an OPLD 
resolution of 20 µm. The reconstruction of the complex coupling coefficient has been performed for 
both OLCR measurements, considering two different cases, that is, considering or not the excess loss. 
The constant parameters between these reconstructions are the design wavelength of λb and the layer 
thickness of 5 µm. 

If the excess loss is not considered, the maximal grating reflectivity is 75 % (Tmax = 1 and 
R + T = 1). The coupling coefficient amplitudes are presented in Fig. 4-23 (top) and it is observed that 
the two curves are not identical, even if the local variations seem to be strongly related. The grating 
length L is 11.9 mm. 

If the excess loss is considered, we have to determine the maximal intensity reflection Rmax and the 
loss parameter α. The optimal parameters search has been conducted under two requirements : 1) 
minimize the difference between the reconstructed amplitudes of the coupling coefficient and 2) 
minimize the remaining amplitudes after the grating output position. 

 
Fig. 4-23 Coupling coefficient amplitudes from the layer-peeling reconstructions 

performed from both sides of the grating (thin and thick lines), taking into account 
(top) or not (bottom) the loss effects 
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The values of 69 % and 6 m−1 have been found for Rmax and α, respectively. The coupling 
coefficient amplitudes are presented in Fig. 4-23 and in this case, the two reconstructions are nearly 
identical for the grating positions and the remaining amplitude after the grating output position is 
under 3 % of the maximal coupling coefficient amplitude. 

The difference between the coupling coefficient amplitudes reconstructed from both sides of the 
grating is presented in Fig. 4-24 (top) for the two reconstruction cases. It is observed that the 
differences are well approximated by straight lines and that for the reconstruction with loss, the line is 
horizontal and close to zero.  

 
Fig. 4-24 Top : coupling coefficient amplitude difference for the case where the 

losses are not considered (thick line) and in the case with the loss in the 
reconstruction (thin line); Bottom : effective Bragg wavelength calculated for the 

reconstruction from both sides (the thin line has been shifted by 1 nm for clarity) 

We have not yet presented the coupling coefficient phase information. We have observed that this 
phase information is not affected by the loss parameter α. For this reason, we limit the representation 
for the case with α = 6. Instead of representing the coupling coefficient phase, we present in Fig. 4-24 
(bottom) the effective Bragg wavelength distributions for the reconstruction from both sides (where 
one response has been shifted by 1 nm), which is a function of the first derivative of the phase 
information. The two curves are quite similar but some local differences are observed. 

We have two possibilities to calculate the excess loss E from the optimal reconstruction parameters 
Rmax and α used in the reconstruction that takes account of the loss. In the first case, Rmax = 0.69 and 
using the ratio Tmin/Tmax and equation (4-54) an excess loss of 8 % is obtained. In the second case, the 
loss factor α of 6 m−1 gives an excess loss of 6.9 % calculated from the light beam attenuation over the 
grating distance L = 11.9 mm, where Iout/Iin = exp(−αL). Both value are slightly different and can be 
due to wavelength dependent excess loss. 

The spectral reflection and transmission intensities have been plotted in Fig. 4-25 for the case of 
constant excess loss of 8 %. We observe that for negative wavelength detuning values, R + T is not 
constant, indicating wavelength dependent excess loss. 
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Fig. 4-25 Measured spectral reflection and transmission intensities, considering an 
wavelength independent excess loss of 8 %; the reference wavelength is the Bragg 

wavelength 

The next step in the reconstruction of such grating would be to consider a wavelength dependent 
loss coefficient α(λ). 

4.6 Summary 
We have shown that for a wavelength bandwidth where the fiber dispersion is negligible, the 

complex OLCR response of a FBG corresponds to the convolution of the complex impulse response 
of the grating with the degree of coherence of the light source. We have also shown that the grating 
impulse response is less directly connected to the OLCR response in the case where the dispersion 
effects are not negligible. Nevertheless, it is experimentally or mathematically possible to retrieve the 
complex impulse response in this case. 

We have detailed the new developed OLCR set-ups, explained the measurement method, the 
apparatus performances and the limitations. This instrument measures the amplitude and the phase 
information of the FBG. The main results concerns the time-multiplexing OLCR set-up that exhibits a 
noise level of −120 dB for optical fiber devices (limited by the Rayleigh back-scattering) and a large 
range of allowed OPLD resolution due to the phase difference measurement method. 

The reconstruction process from the OLCR measurement to the complex coupling coefficient has 
been presented and the reconstruction of different FBGs has been shown. The main results are an 
axial resolution of 20 µm and a maximal absolute error of the amplitude and the phase of 5 % 
calculated by comparison between the reconstructions conducted from both side of the FBG. The 
reconstruction of a FBG that exhibits loss has also been reconstructed using the modified layer-peeling 
method and a good matching between the reconstructions from both sides is observed. 
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Chapter 5 
 

FBG strain sensors 
 
 
 
 
 

FBGs in low-birefringent optical fibers are very efficient axial stress sensors. Within the 
collaboration with the Laboratoire de mécanique appliquée et d'analyse de fiabilité (LMAF), FBGs 
fabricated in our institute have been used with success as strain gauges. A promising preliminary 
experiment on the reconstruction by OLCR and layer-peeling of non-homogeneous axial strain fields 
is developed in section 5.1. Other applications of FBGs for axial strain measurements, not detailed 
hereafter, include : 1) studies on bridging cracks in composites in collaboration with Michel Studer [5-1 
to 5-3], 2) studies on the deformation behavior of composite laminates in collaboration with Federico 
Bosia [5-4 to 5-6] and 3) studies on the characterization of FBGs in non-homogeneous axial stress 
fields by simulation of the spectral intensity response in collaboration with Prof. Kara Peters and Philip 
Pattis [5-9, 5-10]. 

The behavior of FBGs subjected to transversal stress fields has been analyzed for gratings written 
in low-birefringent and polarization maintaining fibers. A diametric load experiment is presented in 
section 5.2 and applications in the measurement of transversal strain fields in composites have also 
been studied [5-7, 5-8]. 

5.1 Axial strain field distribution measurements 
In this section, we describe the experiments conducted on a FBG located at the center of an epoxy 

sample subjected to non-homogeneous axial stress. First, the FBG behavior under axial stress is 
presented in section 5.1.1. The experiment is described in section 5.1.2. The OLCR measurements for 
different loading conditions, the derived spectral response and reconstructed complex coupling 
coefficients are presented in sections 5.1.3 to 5.1.5. From the complex coupling coefficient, an 
effective Bragg wavelength distribution λeff is defined (λeff(z) = 2n0Λeff(z) where Λeff(z) is the effective 
period defined in equation (3-19) and n0 is the effective refractive index of the fiber), which is used to 
calculate the axial strain distribution. A comparison with a finite element calculation is finally presented 
(5.1.6). 

5.1.1 Axial stress effect on fiber Bragg gratings 
We consider here the case of a fiber Bragg grating subjected to a homogeneous axial stress σz (Fig. 

5-1). In this case, the other components are null (σx = σy = τxy = τyz = τxz = 0). In this section, the 
relation between the relative change of the Bragg grating and the axial stress amplitude is determined. 

From the Bragg equation λb = 2⋅neff⋅Λ, where λb is the Bragg wavelength, neff the effective 
refractive index and Λ the grating period, the relative Bragg wavelength variation is given by 
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where n0 = neff(σz = 0). The first term, ez, is the geometric deformation (axial strain) of the FBG and 
the second term, ∆nx,y/n0, is the variation of the refractive index in the plane orthogonal to the 
direction of the light propagation. 

 
Fig. 5-1 : Axial Stress 

The strain components ei are related to the stress field through the elastic tensor, and, in the simple 
case of axial stress, we have the following equation 
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where E  is the Young modulus (E = 72 GPa for standard telecom fibers) and ν is the Poisson ratio 
(ν = 0.16 for standard telecom fibers). 

The dielectric tensor change, ∆εi
−1, is related to the strain field through the elasto-optic tensor 
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 (5-3) 

where Pij are the photoelastic coefficients (P11 = 0.113 and P12 = 0.252 for standard telecom fibers). 
The refractive index change ∆ni can be approximated, using the relation with the dielectric tensor 

(ni2 = εi), by 
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For the axial stress case, we have from equation (5-2) : ex = ey  =−νez = −ν⋅σz/E, and then 
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From equations (5-1), (5-2) and (5-5), the relative Bragg wavelength change is found as 
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 (5-6) 

where pe is the effective photoelastic constant for axial stress that can be deduced from ∆λ(σz)/λ for 
homogeneous axial loading. The effective refractive index remains uniform and constant in the 
transverse plane of the fiber core. The relative variation of the Bragg wavelength is linear with a stress 
σz. The geometric effect corresponds to the first term σz/E and the refractive index effect corresponds 
to the second term − pe⋅(σz/E), which is opposite and about five times smaller than the geometrical 
effect. 

The experimental determination of the effective photoelastic constant of the grating used in the 
experiment is presented in Fig. 5-2 (pe = 0.2148). The calibration is performed applying an 
homogeneous axial stress field to the FBG. 
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Fig. 5-2 Experimental calibration of pe : reflectivity spectrum for different axial 

stress (insert) and relative Bragg wavelength change 

5.1.2 Experiment description 
A preliminary experiment has been conducted to study non-homogeneous axial stress fields and to 

apply the reconstruction method presented in Chapter 4. A 12 mm FBG has been placed in the middle 
of an epoxy sample (Fig. 5-3 left). 

An axial stress has been applied on the sample using the device presented in Fig. 5-3 (right). Due to 
the two notches in the epoxy bloc, the resulting stress field in the grating region will be non-
homogeneous. The sample was connected to a strain gauge and an extensometer was placed on half 
the sample height to measure the average displacement. A measurement of the spectral intensity and 
the complex OLCR response with 20 µm OPLD resolution were performed before and after 
embedding, and for four loading conditions (384, 299, 207 and 116 N).  

The measurement procedure is presented in Fig. 5-4. First, the FBG is completely characterized 
before the embedding in the epoxy sample. The epoxy sample is then subjected to an axial loading of 
about 425 N (obtained by turning the force controlling wheel shown in Fig. 5-3 right). As the stress-
applying device is not force-controlled, the relaxations in the sample lead to a force decrease. A 
relaxation time of about 8 hours was observed and then for a force value of 384 N a complete 
characterization of the FBG is conducted. Three other measurements have been performed for three 
loading conditions (299, 207 and 116 N). The relaxation time τ between these measurements is 1 hour. 
A complete unloading was necessary after the measurement at 299 N due to a loss of the force and 
deformation calibration. Nevertheless, the duration of this unloading and re-loading was only one 
minute and then, parasitic relaxation can be neglected. After this measurement, the sample is removed 
from the stress-applying device and a relaxation time of 8 hours is observed. The last measurement is 
then performed for the 0 N force condition. 
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Fig. 5-3 Left : Sample used in experiment using a FBG and subjected to an 
axial stress; Right : Stress-applying device 

 
Fig. 5-4 Loading procedure 

5.1.3 OLCR measurements 
When the FBG is subjected to a non-homogeneous axial strain field, the Bragg condition depends 

on the position, and an effective Bragg wavelength λeff(z) can be defined that takes into account the 
local chirp. An average Bragg wavelength λmc can be calculated from the reflectivity intensity as the 
mass center of the spectrum (equation 2-17), which depends on the applied force value F. 
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The complex OLCR measurement is performed with an arbitrary laser wavelength reference λL 
chosen in the stop-band wavelength range of the grating. Nevertheless, the OLCR phase difference ∆φ 
in this case depends on the laser choice. For this reason, a new phase difference ∆φmc is calculated for a 
reference wavelength corresponding to the average Bragg wavelength λmc(F) 

1 12mc
L mc

OPLDφ φ π
λ λ

 
∆ = ∆ + ⋅ − 

 
 (5-7) 

In this experiment, the spectral response has been calculated by Fourier transform from the 
complex OLCR measurements. We present in Fig. 5-5 the calculated average Bragg wavelengths 
λmc(F). 

The time interval between the three measurements at 384, 299, 207 and 116 N was the same. This 
explains the good linearity observed between these four points. The measurement at 0 N after the 
experiment has been performed after 8 hours of relaxation. The Bragg wavelength for this case is 
much lower than the expected value from the linear fit performed from the four previous points. It is 
also observed that the grating embedding process increase the Bragg wavelength. This wavelength 
increase is explained by the sample fabrication process, where an important charging force is applied to 
the fiber to guaranty the grating alignment and positioning. The fact that the Bragg wavelengths before 
and after the experiment are not coincident indicates that the applied loads are high enough to induce 
plastic deformations. 

 
Fig. 5-5 Bragg wavelength obtained from the mass center of the frequency response 
calculated from the OLCR measurements; the solid line represents the linear fit 

for the loading cases between 116 and 384 N 

The complex OLCR responses using the average Bragg wavelength at the mass center λcm(F), 
where F is the force (Fig. 5-6). 
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Fig. 5-6 OLCR measurements at different axial loads; amplitude (top) and 

phase difference (bottom), calculated from the Bragg wavelength at the mass center; 
the curves are shifted in order to improve the visibility 

The OLCR amplitude is closely related to the refractive index modulation amplitude ∆nac, but also 
takes into account the attenuation of the light beam propagating in the grating. The OLCR amplitude 
similarity is then explained by the fact that ∆nac is not significantly modified by the applied stress, and 
except from the 0 N loading case, the induced chirp is important and then limits the light attenuation. 
Several inhomogeneities in the FBG are well observed, at the same place and with the same strength in 
all amplitude curves. The phase difference between the OLCR phase and the Bragg wavelength at the 
spectral mass center is obtained from equation (5-7). We observe that the phase difference variations 
increase with the loading amplitude. Locally, the phase difference shows important ripples, much 
bigger than those observed for the phase difference of the grating before the embedding in the sample 
(Fig. 5-7). This can be due to local inhomogeneous strain fields produced by the epoxy relaxation. 

 
Fig. 5-7 Phase difference calculated from the Bragg wavelength at frequency mass 

center for the grating before embedding in the sample (thin line) and after the 
experiment at 0 N (thick line) 

When the sample is charged, the grating length is increased (insert part of the figure Fig. 5-8 for the 
384 N loading case) and the induced chirp reduces significantly the Fabry-Perot effect. This can be 
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observed in Fig. 5-8 for the 384 N loading case, where the amplitude drop at the grating output is 
20 dB deeper than for the 0 N case. 

 
Fig. 5-8 OLCR amplitude response at 384 N (thin line) and 0 N (thick line) 

5.1.4 Spectral responses 

 
Fig. 5-9 Spectral intensity response calculated from the OLCR response (solid 

lines) and directly measured with a tunable laser (circles); the wavelength difference 
origin corresponds to the average Bragg wavelength λmc(F) 
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The Fig. 5-9 presents the spectral intensity response obtained for various loading forces (0 N 
corresponds to the measurement after the loading process and the relaxation rest). The wavelength 
difference is calculated from the average Bragg wavelength λmc(F). A very good agreement is observed 
between the spectral responses calculated from the OLCR data and measured with a tunable laser. The 
maximal reflectivity is two third smaller at 384 N than without load, while at the same time, the 
spectral range is broadened by factor of 3.5. 

5.1.5 Reconstruction of the complex coupling coefficient 
The reconstruction of the complex coupling coefficient has been performed with the layer-peeling 

algorithm using 5 µm layer thickness and a design period corresponding to λcm(F). 
It is observed in Fig. 5-10 (top) that the applied strain field does not perturb the coupling 

coefficient amplitude. This is expected as the coupling coefficient amplitude is only related to the 
refractive index modulation amplitude and effective refractive index and these parameters are not 
significantly modified (0.22 % of relative variations). The local variations of the refractive index 
modulation amplitude are well determined and the reproducibility between the different measurements 
is very good.  

 
Fig. 5-10 Coupling coefficient amplitude (top), phase (middle) and phase 

polynomial fit at the 6th order (bottom) retrieved using the layer-peeling method; 
the design wavelength corresponds to the Bragg wavelength obtained from the 

frequency mass center; the curves are shifted to enhance the visibility 

In the case of axial stress fields, we have seen in equation (5-6) that the stress is proportional to the 
relative Bragg wavelength change. In non-homogeneous axial strain fields, the effective Bragg 
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wavelength distribution λeff(z) is used and can be related to the coupling phase distribution φq (Fig. 
5-10 middle) from equation (3-19) (where Λd = λmc/2neff) 

( ) ( )
1

1 1
2 2

q
eff

mc eff

d z
z

n dz
φ

λ
λ π

−
 

= + ⋅  ⋅ 
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where neff is the effective refractive index (neff = 1.45 in this experiment). 
A polynomial fit to the 6th order is performed on φq to reduce the local variations effects in the 

derivative operation needed to obtain λeff (Fig. 5-10 bottom). 
The local Bragg wavelength is presented in Fig. 5-11 (left) and the difference with λmc(F) in the 

right part. The polynomial fitting of the coupling coefficient phase shows larger errors at the 
extremities that are amplified by the derivative process. This explains that the first and last millimeter 
of the grating has been plotted in gray in the Bragg wavelength difference to indicate not well-defined 
values. We observe that the position in the fiber of the minimal Bragg wavelength difference 
(corresponding to the sample center) is displaced by 600 µm from 384 to 116 N. This could indicate a 
non-symmetric loading. 

 
Fig. 5-11 Effective Bragg wavelength distribution (left) and effective Bragg 
wavelength difference with the average Bragg wavelength obtained from the 

frequency mass center (right) 

From equation (5-6), the axial strain distribution ez(z) can be deducted from the effective Bragg 
wavelength 
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5.1.6 Finite element simulations 

 
Fig. 5-12 Finite Element mesh used for the simulations 

This experiment has also been simulated with the finite elements technique. The mesh definition 
and the calculations have been performed by Dr. Laurent Humbert (LMAF, EPFL). We present in Fig. 
5-12 the defined mesh, where only one eighth of the sample has been considered due to the symmetry 
properties of the sample (adding limits conditions). The mesh density is increased near and inside the 
fiber region and near the notch region. 

The linear behavior of the sample to axial stress loading allows defining a normalized strain 
distribution f(z) at the fiber core location 
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This normalized strain function is presented in Fig. 5-13 (top). From equation (5-9), we have the 
experimental axial strain distribution ez,b(z) for z ∈ [−1.4 , 9.1]. In this range, the minimal strain 
ez,b(z = 0) can be used with the normalized value at the origin f(z = 0) = 1.0476 to calculate the finite 
element simulation axial strain distributions for the different loading cases. These simulations are 
presented in Fig. 5-13 (bottom). 
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Fig. 5-13 Normalized strain distribution along the fiber (top) and axial strain 
distributions for the four loading cases (bottom) 

The comparison with the experimental axial strain distributions is shown in Fig. 5-14. An overall 
agreement is observed but the position scale between experimental and calculated strains does not 
match well. This effect is not explained yet and further investigations on the finite element simulations 
are currently conducted. 

 
Fig. 5-14 Left : axial strain distributions for different axial stress loading forces and 
right : difference with the axial strain value at z = L; the discrete points represent the 

experimental results from the OLCR measurements and the lines represent the 
calculated values obtained with the finite element method 

5.1.7 Conclusion 
The results of this preliminary experiment are fairly good as the strain distribution is obtained along 

the grating (except for a little part less than 1 mm at each grating sides). Nevertheless, the applied loads 
were very high, inducing plastic deformations of the epoxy sample. This explains some unwanted side 
effects as the offset in the average strain. Further work will include improved finite elements 
simulations and other measurements performed in quasi-static states for lower load force values. 

5.2 Characterization of a Fiber Bragg Grating under 
Diametric Loading 

5.2.1 Introduction 
When uniform transverse stresses are applied to a FBG gauge (Fig. 5-15), the refractive index 

becomes non-uniform in the transverse plane of the fiber. This leads to birefringence. The Bragg 
wavelength condition splits in two solutions, one for each refractive index along the fast and slow axis 
of the fiber 
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Fig. 5-15 : 

Transverse Stresses 
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where λB,i : Bragg wavelength for the fast and slow axis 
 Λ : FBG period 
 ni : Refractive index of the fast and slow axis 

If the fiber has a natural birefringence due to internal stresses included during the fiber preform 
fabrication, the birefringence due to loading can enhance or remove the natural birefringence of the 
fiber. If the transverse strains induce an axial deformation of the fiber, the Bragg wavelengths 
equations above need to be adapted. 

Several articles report on experiments of transverse stresses applied to optical fiber. For example 
Wagreich et al [5-11] have conducted diametric load experiments on low-birefringent fiber. Good 
agreement between the proposed theory and experimental results were obtained. Lawrence, Nelson, 
and Udd [5-12, 5-13] performed similar work but in a polarization maintaining (PM) fiber. In this case, 
the proposed theory was unable to explain the experimental results. 

Since we are interested in utilizing FBG’s written in PM fibers in composite structures for 
monitoring transverse stresses, we need to characterize the FBG gauge when placed in a transverse 
stress field. A diametric loading technique has also been chosen to investigate FBG response in low 
and high-birefringent fibers. A simple theoretical model is proposed that explains also the results of 
FBG in high-birefringent fibers. 

5.2.2 Experimental Setup 
The mechanical setup allows for the application of uniform diametric load on an optical fiber and 

permits the reproducible rotation of the fiber around its axis. Fig. 5-16 shows the setup without the 
rotation system. The ball situated between the lever and the upper glass/steel part, ensures the 
transmission of a uniform force on both fibers from the suspended mass. Two fibers are used to 
ensure a perfect uniform loading.  

      
Fig. 5-16 : Side and Front view of the setup  

The rotation system is based on a fiber magnetic clamp holder (insert of Fig. 5-17). The angle 
between the diametric load and the fiber is set with the metal handle that follows the angle graduation 
written on the white half-disk (Fig. 5-17).  
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Fig. 5-17 : Pictures of the experimental setup for diametric load (insert : rotation 

system) 

The optical setup for Bragg wavelength measurement in transmission is presented in Fig. 5-18. 
Another configuration in reflection using a 3 dB coupler has also been realized. Using a linearly 
polarized tunable laser and a polarization controller, each polarization mode can be measured 
separately. 

 
Fig. 5-18 : Transmission setup for Bragg wavelength measurement; TL : tunable 

laser, POLA : polarization controller, D : detector 

5.2.3 Diametric Load of low-birefringent fiber 
The model used to simulate the response of a FBG written in a low-birefringence fiber is based on 

the following hypotheses: 
− The applying region of diametric load is longer than the FBG length, then the state of 

strain can be said Plane-strain (no deformation in the direction of the fiber axis) 
− No shear stress 
− The fiber is mechanically homogeneous, isotropic and the deformations are elastic 

(linearity between stresses and strains) 
− The core fiber is dielectric, isotropic, homogeneous and non dispersive 

From the Bragg wavelength equation, the variation of Bragg wavelength is 
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where 
 λB,i : Bragg wavelength for the fast and slow axis 
 ni,eff : Effective refractive index of the fast and slow axis directions 
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 ni :  Refractive index of the core fiber in the fast and slow axis directions 
 Λ : FBG period 

The geometrical variation ∆Λ/Λ , which correspond to the deformation along the Z axis, is zero 
due to the Plane-strain hypothesis. Then 
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In the reference where the inverse dielectric permeability tensor ε-1 is diagonal : 
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and then 
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where 
 ε-1ij : Dielectric permeability tensor 
 ni : Refractive index of the fast and slow axis directions 
 Pij : Strain-optic tensor 
 εi : Strain 
 Sij : Elasticity tensor (S11=1/E and S12=-ν/E) 
 σi : Stress 
 E : Young Modulus 
 ν : Poisson Ratio 

The relative Bragg wavelength sensitivity depends on light polarization and might be different in 
the x and y direction. Combining the equations above the variation of Bragg wavelength is given by 
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 (5-16) 

The relation between σi and ei are derived from the general case and the hypothesis of Plain Strain 
(ez = 0). In the last equation, nx and ny are approximated by n0. 

For the diametric load of an optical fiber, the core is small regarding the fiber diameter, therefore 
the stress should be uniform in the core and equal to the stress at (x,y)=(0,0) (Fig. 5-19) [5-14]: 

 
Fig. 5-19 : Diametric load of optical 

fiber (Z-direction along the fiber axis) 
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where 

d : Fiber diameter 
R : Fiber radius 
t : Length of diametric applying region 
P : Diametric load in N (P/t is the line 

load density) 

(5-17) 
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Fig. 5-20 FBG reflectivity under diametric load from 0 N to 155 N. 

Fig. 5-20 shows the experimental results for a low-birefringence fiber under diametric load. Each 
curve represents two measurements for a given load applied on a length of 26 mm. Each spectrum is 
the superposition of the two independent polarization measurements. There is no initial birefringence. 
For small diametric load both modes are degenerated. For higher values the two modes are clearly 
separated. For 155 N the separation is about 0.45nm. 

Fig. 5-21 shows the measured and calculated peak reflectivity as a function of applied load for the 
two polarization modes. The wavelength changes are strongly different for the two modes. Slow and 
fast axis have sensitivities of 31.0 10-4 and –1.36 10-4 nm/N. A very good agreement between 
experimental and calculated values is observed. 

 
 

In Fig. 5-21 the following values have been 
taken [5-15, 5-16] for the theoretical model: 
 
P11 = 0.113 
P12 = 0.252 
E = 64.1 Gpa 
ν = 0.16 
d = 125 µm 
t = 26 mm 
λB,0 = 1526.616 nm 
n0 = λB,0 / 1058.5 = 1.442245 
 

Fig. 5-21 FBG Bragg wavelength under diametric load; circles 
or triangles: experimental data; solid line: calculated values 

 

5.2.4 Diametric Load of Polarization Maintaining Fiber 
Diametric load has also been applied on FBG written in a PM fiber where a natural birefringence 

exists. The stress state in the fiber core, σ, is assumed to be the superposition of stress due to the 
natural birefringence,σ̂ , and diametric loadσ . The natural PM fiber birefringence is described with a 
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Plane Stress, Plain Strain model. Two distinct materials compose the fiber: Silica and borosilicate in the 
stress-inducing region (like the “Bow-Ties” for the used fiber). These two materials have different 
mechanical properties (E and ν), therefore the fiber exhibits anisotropic mechanical behavior when 
stress is applied on the fiber surface. Even if the fiber core is isotropic, the resulting stresses at the 
fiber core for an external diametric load vary with the angle of applying load direction. The stress σ’ is 
a function of the load P and the angle θ. To model the diametric load effect, we assume small external 
load leading to effective stresses.  

The natural fiber birefringence, described with σ̂ , is in the principal axis system given by 

 
Fig. 5-22 : Polarization maintaining fiber geometry 
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In the PM fiber used, the natural birefringence is due to stress applying region in “Bow-Tie” shape 
(Fig. 5-22). In this case only one parameter Dp is needed to describe the natural birefringence. Using 
the low-birefringent fiber model, an equation for Dp is found for the case where the diametric load 
P=0 

( ) ( )
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= =
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 (5-19) 

For a birefringence of 0.42nm at 1533.3nm, Dp = 21.5 kN/m. 
The diametric load P is applied in a direction y’ forming an angle θ with the y-axis (Fig. 5-23). The 

stresses are described by a matrix σ' : 

 
Fig. 5-23 : Diametric load on PM Fiber 
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σ'has to be transposed in 0σ  in the (X,Y) reference using the rotation matrix ( )θR : 

( ) ( )θ θ= -1
0σ R ×σ'×R  (5-21) 

We define effective stress tensor as 0σ = α×σ , where the matrix α  considers the fiber specific 
anisotropy and is assumed to be independent on external load. In addition we assume that the stresses 
in the X and Y direction are much bigger than the shear stress. Therefore effective stresses in the X, Y 
directions are independent of the shear stress (αij =0). In addition we assume that the diagonal 
elements are independent of angle θ. σ  becomes: 

1

2

0
0

α
α

 
=  

 
0 0σ = α×σ ×σ  (5-22) 

The global stress state σ  in the core of the fiber and in the (X, Y) reference is the superposition of the 
natural birefringence stress state σ̂  and the stress state due to diametric load σ : 

ˆσ = σ + σ  (5-23) 

If the angle θ is different from k⋅π/2, the shear stress τxy is not zero. In this case the secondary 
principal stresses (p’,q’)z  for the light propagating in the Z direction in the fiber core have to be 
calculated [5-14] 

 
Fig. 5-24 : Reference (X,Y) of the fiber, 

(X’,Y’) of the diametric load, (p’,q’) of the 
secondary principal stresses 
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where ψ : Angle between the X axis and 
the p’ axis (Fig. 5-24) 
 

(5-24) 

Due to equation ((5-24), PM fibers subjected to transversal loads display a different behavior with 
respect to isotropic fibers. Namely, the relationship between the applied transversal strains εx and εy 
and the measured Bragg wavelength shifts is not necessarily linear, except when the strains are directed 
along the symmetry axes of the fiber. This theoretical development explains the experimental non-
linearity observed in other works but not understood until now [5-17]. 

The hypothesis of fiber core isotropy and Plane Strain are also valid, then the model developed for 
the low-birefringent fiber can be applied, but with the secondary principal stresses (p’,q’) instead of σ. 
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(5-25) 

The variation iζ  of the Bragg wavelength with the applied load is  
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(5-26) 

For θ=0° or 90° ˆ' x x xp σ σ σ= = +  and ˆ' y y yq σ σ σ= = + , and is therefore independent of the 

natural fiber birefringence. Since σ̂  is independent of the load P the variation of the secondary 
principal stresses with external load is given by 
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Matrix inversion leads to  
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For the investigated fiber the following values are obtained: 
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 (5-29) 

Fig. 5-25 shows experimental and calculated values of Bragg wavelength as a function of applied 
load for different angle, θ, between load direction and the principle axis of the fiber. Each graph 
represents the response along slow (p’) and fast (q’) fiber axis. The agreement between experiment and 
model is good for small load. The slope depends strongly on θ. 

 
Fig. 5-25 Bragg wavelength of a FBG written in a PM fiber under diametric 

load for different angle of loading (x axis : diametric load [N] and y axis : Bragg 
wavelength [nm]). 
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Fig. 5-26 Sensitivity of the FBG sensor for diametric load; circles(slow) and 

crosses(fast) are experimental values, dashed lines for (α1,α2)=(1,1) and solid 
line for (α1,α2)=(0.47,1.03). 

Fig. 5-26 shows the measured slopes ζi, (FBG sensitivity) as a function of angle θ. Two theoretical 
cases are represented, for (α1,α2)=(1,1) and (α1,α2)=(0.47,1.03). It is clear that the stress field has to be 
modified using effective stresses to take into account the anisotropy of the fiber. The sensitivity is a 
periodic function of the angle (180° period) and the response of slow and fast axis are phase shifted by 
90°. The model describes clearly the non-sinusoidal behavior of the experimental data in contrast to 
references [5-12, 5-13], which describe similar experimental results by a sinusoidal approach. 

With the analytical model, it is possible to develop a demodulation algorithm to retrieve the stresses 
from Bragg wavelength variations. It has to be noticed that, if we consider the shear stresses in the 
(X,Y) plane, we have four unknowns : σx, σy, τxy, and θ. With two superimposed FBG’s in a PM fiber, 
the complete state of stresses can be obtained. 

5.2.5 Study on the PM fiber strain anisotropy sensitivity 
An important work has been performed to find the physical origin that could explained the 

experimental  strain anisotropy sensitivity observed in the diametric loading of a PM fiber. A finite 
element model of the PM fiber has been realized in the LMAF laboratory by Federico Bosia. The 
simulation of diametric load has been conducted to retrieve the strain field at the fiber core where the 
FBG is located. Using the material parameters provided by the manufacturer, a very small strain 
anisotropy is observed at the core location (less than 5 % compared to the isotropic fiber case). Other 
material parameters have been found in the literature and applied to the simulation. The found 
anisotropy is more important and explains partially the transverse stress sensitivity anisotropy of the 
FBG in PM fibers. The results presented hereafter are partly based on the joined-papers written in 
collaboration with the LMAF group [5-7, 5-8]. Nevertheless, it remains open questions to completely 
describe the behavior of FBG written in PM fibers subjected to transverse stress and further studies 
are required. 

a) Finite element modelization 
Due to the complex structure of the fiber in this case, finite-element-method (FEM) simulations 

need to be carried out to determine the strain distributions generated in the fiber core and derive 
numerical predictions to be compared with experimental measurements. In order to do this, the 
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residual strains responsible for the initial birefringence of the fiber need to be estimated, and then the 
response to diametrical compression evaluated. The FEM simulations are performed using the I-
DEAS code. 

 
Fig. 5-27 Micrograph view of the PM fiber (a) and finite element mesh used for 

the simulations 

Fig. 5-27a illustrates a micrograph of the PM-fiber section. The borosilicate bow ties are clearly 
visible. Based on this geometrical information and on manufacturer specifications, the 2-D FEM mesh 
is constructed (Fig. 5-27b). The diameter of the fiber is 125µm and that of the mode field is 9µm. The 
mesh correctly models the borosilicate bow ties (about 15x20µm) and the silica-glass core and 
cladding, and is refined in the central fiber-core region where strains are calculated [5-23]. A Young’s 
modulus of EB=67 GPa and a Poisson’s ratio of νB=0.17 are used for borosilicate (data provided by 
Fibercore). As mentioned previously and as indicated in Fig. 5-28a, the coordinate axes parallel and 
perpendicular to the bow ties are indicated as x’ and y’, whilst those parallel and perpendicular to the 
loading direction are indicated with x and y. 

b) Simulation of the natural birefringence and of the diametric load 
The residual strains responsible for the birefringence are estimated assuming a linear elastic thermal 

loading problem. The approach is similar to that employed in [5-18]. Thermal expansion coefficients of 
αB = 14x10-7°C-1 and αG = 5.5x10-7°C-1 are used for borosilicate and silica glass, respectively (data 
provided by Fibercore). Simulations are performed using both plane-strain and plane-stress elements. 
The assumption that the resulting residual strains generated in this type of geometry are equal and 
opposite along the slow and fast axes, respectively, can thus be verified. The ratio between the two 
strains is found to be εR,1/εR,2 = -0.89, therefore the previous assumption can be modified and this 
correction, though small, accounted for in calculations.  

a)     b)  

Fig. 5-28 Axes definition (a) and diametric load geometry (b) 

Additionally, simulations are carried out to determine the strains generated in the fiber core by 
diametrical loads in the same loading range as that considered experimentally. The strains are 
determined as a function of loading angle γ (Fig. 5-28b). Due to the structure of the PM fiber, some 
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anisotropy is expected, i.e. loading in the direction of the x’-axis in Fig. 5-28b should give smaller ε1 
strains than the ε2 strains obtained when loading in the y’-direction. This is indeed the case, however, 
due to the small mismatch between the elastic properties of silica and borosilicate, this effect is found 
to be negligible. A difference of 5% at most is obtained with the strains calculated in a homogeneous 
isotropic fiber with no bow ties, as is the case for the standard SM fiber. 

 
Fig. 5-29 Bragg wavelength deviation for an applied diametric load at an angle 

γ = 54° (a) and FBG diametric load sensitivity calculated by linear fit for 
different loading ranges (b) 

Having calculated the strains in the fiber core as a function of loading angle γ, it is possible to 
highlight the influence of the initial birefringence of the PM fiber on the sensor response to transversal 
loading. Using the approach illustrated earlier, the expected Bragg wavelength shifts are calculated as a 
function of applied diametrical load for various loading angles. Whilst the response is linear when 
loading is directed along one of the polarization axes (γ =0° or γ =90°), this is no longer true for all 
other loading angles. For example, results are plotted for γ =54° in Fig. 5-29a : the nonlinearity in this 
case is evident. This is due to the load-dependent rotation, described by equation (5-24), of the 
principal axes with respect to the initial polarization axes. Thus, the response of a FBG sensor written 
in PM-fiber to transverse loads applied at an angle to the fast and slow axes is nonlinear, at least in the 
range where the strains due to loading are of the order of the residual strains generating the 
birefringence. This is also consistent with experimental results.  

Due to this behavior, an error is introduced when an angular sensitivity per unit load is defined, as 
done in [5-13, 5-21], because the slope of the wavelength shift changes with the load. Figure Fig. 5-29b 
shows the numerically calculated sensitivities when the slopes are taken at P/l=1N/mm and 
P/l=6N/mm. In both cases, the sensitivities for the fast and slow axes are plotted. It is apparent that 
for increasing loads, a deviation from the expected sinusoidal behavior is obtained. 

Furthermore, only a very small anisotropy is observed, i.e. the sensitivity is nearly identical when 
loading is directed along the slow axis at γ =0° and fast axis at γ =90°. This is not the behavior 
encountered experimentally. The experimental measurements indicate that in fact the fast axis is 
considerably less “sensitive” to diametrical compression, by a factor close to 2. These results are also 
obtained in similar experiments in the literature [5-21, 5-22]. The reasons for this mismatch between 
experimental and numerical results are thus far unclear. One possibility is a rather large uncertainty on 
material properties of borosilicate. For example, in references [5-18] and [5-13] a Young’s modulus and 
Poisson’s ratio of 50.8 GPa and 0.21 are used, respectively. These values differ considerably from 
those provided by the manufacturers of the fibers used in this study. Therefore, both sets of material 
parameters are used in FEM simulations, and results are compared.  

Fig. 5-30 shows the experimentally measured and numerically calculated sensitivities as a function 
of the loading angle for P/l =1 N/mm. The numerical values are determined using both EB=67 GPa 
and EB=50 GPa. It is clear that a greater mismatch between the Young’s moduli of silica and 
borosilicate improves the agreement between experimental and simulated results, however, a 
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considerable discrepancy remains. Other possible explanations for this discrepancy are an 
oversimplified model for the loading configuration or the effect of a displacement of the grating 
location in the core with respect to the geometrical center of the fiber. 

 
Fig. 5-30 Experimental FBG sensitivity to small diametric loading force and 

simulated sensitivity by finite elements for two sets of borosilicate material 
parameters 

5.2.6 Conclusions 
The analytical model developed to simulate the diametric load on FBGs correctly predicted the 

behavior of FBGs written in low-birifringent and the non-linear behavior of FBGs written in 
polarization maintaining fibers. Nevertheless, the anisotropic sensitivity to transversal strain fields 
observed experimentally for the gratings in PM fibers could not be completely explained, requiring 
further investigations. 
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Chapter 6 
 

FBG based humidity and temperature sensor 
 
 
 
 
 

This chapter presents the results obtained in collaboration with the civil engineering department of 
EPFL on the development of a FBG based humidity sensor. The first section, based on a conference 
paper presented in 2001, reports the influence of temperature and relative humidity on polyimide 
coated FBG. The following section presents the published joined paper appeared in Optics letters in 
2002. A theoretical approach of diffusion based on Fick’s law has also been developed and numerically 
implemented to study the swelling properties of the polyimide used for fiber recoating. The results are 
not presented hereafter but can be found in the thesis work of Pascal Kronenberg (Thesis work, 
EPFL, 2002). 

6.1 Influence of humidity and temperature on 
polyimide-coated fiber Bragg gratings 

This section is based on the paper presented at the BGPP conference (Bragg Gratings, 
Photosensitivity, and Poling in Glass Waveguides) organized by the Optical Society of America in 
Stresa (June 2001). The contributing authors were : 

− Philippe Giaccari, Hans G. Limberger : Institute of Applied Optics, Swiss Federal 
Institute of Technology 

− Pascal Kronenberg : Institute of Structural Engineering and Mechanics, Swiss Federal 
Institute of Technology 

6.1.1 Abstract 
The influence of humidity and temperature on a polyimide coated in-fiber Bragg grating was 

investigated. The obtained normalized Bragg grating responsivities are 4.36⋅10−6 RH%−1 and 
1.06⋅10−5 K−1, respectively. 

6.1.2 Introduction 
Intra-core fiber Bragg gratings (FBG’s) have a huge application potential in telecommunication and 

sensor networks. The reliability of these devices is crucial for their long-term applications [1]. In 
addition, a channel spacing of 50 to 100 GHz in dense wavelength division multiplexing systems 
(DWDM) or precise temperature monitoring requires high wavelength stability over time in standard 
or harsh environments. Environmental parameters such as temperature and stress are known to alter 
the filter characteristics of FBG’s [2, 3].  

Here we report on first results on the sensitivity of polyimide coated FBG’s to relative humidity 
with a cross-sensitivity to temperature. Bare fiber FBG’s are insensitive to humidity as bulk glass. 
However, polyimide polymers are hygroscopic and swell in aqueous media. This coating swelling 
induces axial and radial strain in the fiber, modifying the Bragg condition of the FBG. 
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6.1.3 Experiment 
A bare fiber Bragg grating (FBG1) and a polyimide coated FBG (FBG2) have been exposed to 

temperatures and relative humidity in a climate chamber (Fig. 6-1). 

                  
Fig. 6-1 Tests fiber Bragg gratings (left) and polyimide coated FBG geometry 

(right) 

The experimental setup is shown in Fig. 6-2. The first grating around 1535 nm without coating has 
been fabricated in a SMF 28 fiber using ArF excimer laser and phase mask. The second FBG around 
1550 nm is a commercial FBG that was recoated with a polyimide by the manufacturer. The re-coated 
fiber diameter was measured under a microscope and the coating thickness was determined to 
57.5 µm. The gratings were spliced together and integrated into an FBG measurement setup. The 
reflectivity of both gratings is measured using a tunable laser and a photo detector with A/D 
converter.  

 
Fig. 6-2 Measurement set-up 

A calibrated “Rotronic” electrical temperature (PT100) and relative humidity sensor (capacitive) are 
placed in the climate chamber. The sensor has a response time of less than one minute. A computer 
controls the environmental conditions in the climate chamber, controls the tunable laser, and performs 
the read out of the optical signal. From the reflection spectra of both gratings their Bragg wavelengths 
were obtained for different (RH, T) conditions. 

The climate chamber maintains a constant temperature during RH variations. For six different 
temperatures from 23 °C up to 50 °C the relative humidity was changed from 10 RH% to 90 RH% in 
steps of 20 RH%. Unfortunately, the “Rotronic” sensor limited the maximal temperature. For every 
(RH, T) combination a measurement time of 120 minutes was taken to allow for a saturation of water 
within the polyimide. Every two minutes the changes of environmental conditions (RH, T) in the 
climate chamber were obtained from the “Rotronic” sensor and a full reflection spectrum of each 
FBG was taken. All data were stored on a computer for data processing. 

The polyimide coating of the FBG has been removed after the experiment and the temperature 
sensitivity of both FBG’s has been measured in a separate measurement setup. It consists of a 
temperature controlled water recipient with a mercury thermometer and the FBG reflection 
measurement set-up (Fig. 6-3). 

Sensitivities of 6.78⋅10-6 and 6.31⋅10-6 K-1 were obtained for the SMF 28 and the commercial fiber, 
respectively. These values are in good agreement with published results [2,3]. The temperature 
obtained from the reference grating agreed well with the value obtained from the “Rotronic” sensor. 
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Fig. 6-3 Temperature sensitivity of FBG measurement and set-up (insert) 

6.1.4 Results and discussion 

 
Fig. 6-4 Bragg wavelength of polyimide recoated in-fiber Bragg grating for different 

relative humidity and temperature 

Fig. 6-4 shows the Bragg center wavelength of the polyimide recoated FBG as a function of time. 
At constant temperature an increase in humidity shifts the Bragg wavelength to higher values. The RH 
influence on the polyimide seems to be reversible, as the Bragg center wavelength is the same at the 
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beginning and the end of the RH-cycle for constant temperature. Previous experiments have shown a 
non-reversible component depending on the maximum temperature that the FBG has experienced in 
the past. It may be due to a thermal curing process of the polyimide. This effect is not well understood 
and will be studied in the future.  

For bulk polyimide, the volume variation for a RH change is isotropic in all directions. Since the 
polyimide is tightly attached to the fiber, polyimide longitudinal strains are transferred to the fiber. A 
volume change induced by the water content inside the polyimide matrix will lead to a fiber elongation 
or retraction. 

 
Fig. 6-5 Normalized FBG time response at 28 °C and 50 °C is compared to 

the normalized response of the RH sensor. 

At each step the saturation level is obtained after several tens of minutes. The time constant of the 
process depends on temperature (Fig. 6-5). At low temperature the polyimide coated FBG responds 
much slower than the climate chamber RH evolution measured by the reference gauge (“Rotronic” 
sensor). With increasing temperature the response accelerates. Diffusion of water molecules through 
the coating determines probably the time constant [4].  

Fig. 6-6 shows the Bragg wavelength shift as a function of relative humidity (steady state average 
values) for the different temperature cycles. For each temperature we obtain a linear function for the 
Bragg wavelength shift vs. relative humidity. Small deviations from linearity are within the 
measurement errors. We can describe the relative wavelength shift with temperature and relative 
humidity as: 

% %T RHA T B RHλ
λ

∆
= ⋅ ∆ + ⋅ ∆  (1) 

where AT and BRH% are the respective T and RH sensitivities of the polyimide recoated FBG. A two 
dimensional regression to the temperature and relative humidity data leads to 
 
 AT  =  1.06⋅10-5 ± 1⋅10-7  K-1 BRH%  =  4.36⋅10-6 ± 5⋅10-8  RH%-1, 
 
where the errors are obtained as the respective standard deviations from the fit. 

A relative humidity variation of 80% leads to a maximum wavelength shift of 0.54 nm at 1550 nm. 
This corresponds to a 33 °C temperature variation. This wavelength shift is more than 2/3 of the 
channel spacing in 100 GHz DWDM systems and may cause system failure. Polyimide re-coatings are 
generally used in high temperature environments (T > 120 °C). In such environments where relative 
humidity and temperature can change, temperature sensing needs the measurement of relative 
humidity by an additional grating. The observed linearity of the Bragg wavelength with relative 
humidity may find use in an all-fiber RH sensor [5]. 
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Fig. 6-6 Bragg wavelength shift of polyimide recoated FBG as a function of 

relative humidity for different temperatures. 

6.1.5 Conclusion 
The polyimide used for FBG re-coating leads to a sensitivity of the FBG wavelength to humidity 

and enhances its temperature sensitivity as expected. The polyimide coated FBG shows sensitivities of 
4.36⋅10-6 RH%-1 and 10.6⋅10-6 K-1. Relative humidity changes can lead to a wavelength shift of more 
than 0.5 nm at 1550 nm. For applications where the narrowband filter wavelength stability is essential 
like DWDM, less sensitive coatings or sealing have to be employed. In high temperature sensor 
applications, where polyimide coatings are necessary the RH cross sensitivity has to be considered. 
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2. G. Meltz, “Overview of Fiber Grating-Based Sensors”, Proceedings of SPIE, vol. 2838, pp. 2-21, 1996. 
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6.2 Relative Humidity Sensor Using Optical Fiber 
Bragg Gratings 

This section presents the paper that has been published in Optics Letters, 27 (16), p. 1385−7. The 
authors are : 

− Pascal Kronenberg, Pramod K. Rastogi : Institute of Structural Engineering and 
Mechanics, Swiss Federal Institute of Technology 

− Philippe Giaccari, Hans G. Limberger : Institute of Applied Optics, Swiss Federal 
Institute of Technology 

 
 
 

This paper presents a novel concept for an intrinsic relative humidity sensor using 
polyimide-recoated fiber Bragg gratings. Tests in a controlled environment indicate that 
the sensor has a linear, reversible and accurate response behavior between 10 and 90 %RH 
and between 13 and 60 °C. The relative humidity and temperature sensitivities were 
measured as a function of the coating thickness and the thermal and hygroscopic 
expansion coefficients of the polyimide coating were determined. 

 
 
 
Numerous applications such as chemical processing, air conditioning, agriculture, food storage and 

civil engineering require humidity sensing. Several researchers have reported on the measurement of 
relative humidity in air using optical fiber sensors, which are particularly valued for their performance 
in harsh environments [1]. Optical sensing techniques proposed so far include extrinsic interferometric 
[2, 3] and spectroscopic [4] point sensors, as well as intrinsic evanescent-field [5] and microbend loss 
based [6] distributed sensors. Recently we presented a study on the influence of relative humidity and 
temperature on a commercial polyimide-recoated fiber Bragg grating [7]. Here we explore a novel 
concept for an intrinsic relative humidity point sensor using polyimide-recoated fiber Bragg gratings. 
We describe the steady state relative humidity and temperature response of the sensor as a function of 
the fiber coating thickness, which also allows us to determine the thermal and hygroscopic expansion 
coefficients of the polyimide. 

Fiber Bragg grating sensors have been a topic of sizeable research efforts in recent years [8]. A fiber 
Bragg grating is a permanent, periodically index-changing structure written into the core of an optical 
fiber. Fiber Bragg gratings are attractive sensing elements since they feature a response that is 
reversible, accurate and stable over long time periods, can be used for absolute measurements and can 
be readily applied to in-line multiplexed sensor chains. The latter makes it possible to set up multi-
point and multi-parameter (e.g. strain, temperature) single-fiber sensors. 

Bare silica fibers are not sensitive to humidity. Polyimide polymers, however, are hygroscopic and 
swell in aqueous media as the water molecules migrate into them. Analogous to the hair in a 
mechanical hair hygrometer, the swelling of the polyimide coating induces strain in the fiber, which 
modifies the Bragg condition of the fiber Bragg grating and thus serves as the basis of the proposed 
sensor. 

We have already shown that the response behavior of a polyimide-recoated fiber Bragg grating is a 
linear superposition of relative humidity and temperature effects [7]. In the presence of a variation in 
humidity and temperature, the relative Bragg wavelength shift, ∆λ/λ, for relative humidity, ∆RH, and 
temperature changes, ∆T, is therefore given by  

∆λ/λ = SRH∆RH + ST∆T (1) 

where SRH and ST are the sensor sensitivities to relative humidity and temperature, respectively. 
To relate the sensitivities to material properties, SRH and ST may be expressed as the sum of a 

mechanical, a strain- and, for ST only, a thermo-optic contribution: 
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[ ]-1
fcfecfRH %RH    )β-(βp̂-βS =  (2) 

and 

[ ]-1
fcfecfT K    ξ)α-(αp̂-αS +=  (3) 

where, βcf and βf are the hygroscopic expansion coefficients of the coated and the bare fiber – which is 
zero –, respectively; αcf and αf are the thermal expansion coefficients of the coated and the bare fiber, 
respectively. ep̂ = neff2 (p12 + εel,r / εel,z (p11 + p12)) / 2 is the effective photo-elastic constant of the 
coated fiber, where neff is the effective refractive index of the fiber, pij are the Pockel’s (piezo) 
coefficients of the strain-optic tensor, and εel,r and εel,z are the radial and axial elastic strains of the 
coated fiber, respectively. ξ is the thermo-optic coefficient of the fiber core. 

The mechanical behavior of the coated fiber is modeled with an infinitely long, bi-material 
composite rod wherein the two materials cohere perfectly. As both materials exhibit different relative 
humidity and temperature sensitivities, the humidity- and temperature-induced constrained expansion 
exerts strain on the fiber. Assuming a one-dimensional (1-D), purely axial model, the equilibrium and 
compatibility conditions are σfAf + σcAc = 0 and εf = εc, respectively, where, σi is the axial stress; Ai is 
the cross-section area; and εi is the total, i.e. elastic and thermal / hygroscopic, axial strain of the fiber 
(i = f) and of the coating (i = c). With the deformation obeying an elastic, Hookean law, the 
hygroscopic and thermal expansion coefficients of the coated fiber are the sums of the stiffness 
weighted expansion coefficients of the bare fiber and of the coating, βcf = kfβf + kcβc and 
αcf = kfαf + kcαc, respectively. βc and αc are the hygroscopic and thermal expansion coefficients of the 
coating, ki = EiAi / ΣEjAj is the stiffness proportion of the silica fiber and of the polyimide coating (i, j 
= f, c) with Ef and Ec being the moduli of silica and polyimide, respectively. Regarding 

ep̂ , we notice 
that, using the 1-D model, εel,r is set to zero (no radial strain). For a more realistic simulation of the 
mechanical behavior of the fiber, which also takes into account both radial and tangential effects, a 3-
D finite element model was employed. 

FBG 1

Climatic chamber

Reference T + RH gauge

PC
control

measured data

measured data

2 3 4 5 6 87

FBG-IS

 
Fig. 1.   Experimental setup. 

The sensor response to relative humidity and temperature was experimentally measured in a 
computer controlled climatic chamber. An array of eight fiber Bragg gratings written in SMF 28 type 
fiber with different Bragg wavelengths in the 1550 nm band were spliced together and integrated into a 
fiber Bragg grating measurement setup (Fig. 1). The reflected spectrum was demodulated using a fiber 
Fabry-Perot tunable filter. For reference monitoring, an industry standards-compliant, combined 
resistive temperature (RTD) and capacitive relative humidity gauge from Rotronic was placed next to 
the gratings. A computer acquired the read out from the fiber Bragg grating interrogation system 
(FBG-IS) and from the reference gauge. 

In order to quantify the influence of the coating thickness on the sensor sensitivity, one bare 
grating (FBG 1) and seven gratings with different average coating thicknesses of 3.6 (FBG 2), 6.6 
(FBG 3), 11.8 (FBG 4), 18.7 (FBG 5), 21.3 (FBG 6), 27.3 (FBG 7) and 29.3 µm (FBG 8), respectively, 
were installed into the measurement system. The coating thickness, measured by microscope, exhibits 
an uncertainty of ± 1 µm due to non-homogeneity. All gratings were fabricated in-house and, with 
exception of FBG 1, mold-coated in a Vytran UV-recoater. The polyimide used for coating was 
obtained from HD MicroSystems (Pyralin®) and contains a UV-curable component, which is 
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employed to transform the liquid polymer into a soft gel state before proceeding with the heat cure. 
The coating procedure had to be repeated several times to obtain thicker coatings. 

For tests related to sensor characterization and calibration, the climatic chamber was set to maintain 
a constant temperature during relative humidity cycles. The relative humidity was incrementally raised 
from 10 to 90 %RH, and then lowered back down to 10 %RH, for five different temperatures between 
13 and 60 °C. The highest temperature is limited by the maximum operating range of the electrical 
gauge. Yet additional tests have shown that the sensor is not damaged by being exposed to 
temperatures ranging from -20 up to 160 °C. For each relative humidity and temperature combination, 
measurements were taken in 1-minute intervals for two hours to make sure that the water content 
within the polyimide reaches an equilibrium state. As a rule, the Bragg wavelength shift saturates after a 
few minutes [7]. The changes in environmental conditions in the climatic chamber were monitored 
using the gauge, simultaneously with the recording of signals returned from each fiber Bragg grating. 

Figure 2 shows the relative Bragg wavelength shift of FBG 8 as a function of relative humidity 
(steady state average values) for different temperatures. An increase in relative humidity or temperature 
shifts the Bragg wavelength to higher values. Experimental data are found to vary linearly with relative 
humidity and temperature changes, as assumed in the model described in eq. (1), confirming a linear 
relationship between relative humidity and polyimide expansion. A two-dimensional linear regression 
of the temperature and relative humidity data leads to temperature and relative humidity sensitivities of 
ST = (7.79 ± 0.08)·10-6 K-1 and SRH = (2.21 ± 0.10)·10-6 %RH-1, respectively. The errors result from 
measurement uncertainties. Applying a quadratic regression, the quadratic and mixed terms are smaller 
than the uncertainties, which demonstrates that the material properties are not significantly influenced 
over the tested temperature range, neither by temperature nor by relative humidity. 

-1

0

1

2

3

4

0 20 40 60 80 100
Relative humidity, RH   [%RH]

Re
l. B

ra
gg

 w
av

ele
ng

th
 sh

ift
, ∆

λ/
λ  

  [
10

-4
]

13 °C

18 °C

29 °C

44 °C

60 °C

 
Fig. 2.   Relative Bragg wavelength shift of FBG 8 as a function of relative 

humidity for different temperatures (zero relative Bragg wavelength shift arbitrary 
chosen). 

The influence of relative humidity on the swelling of the polyimide is reversible, as the Bragg 
wavelength is the same at the beginning and at the end of a relative humidity cycle at constant 
temperature. Experiments have also shown a non-reversible component for temperatures exceeding 
values previously experienced. This may be due to a final thermal curing process needed for the 
polyimide to stabilize, and can be by-passed with an initial burn-in cycle. 

Figure 3 shows the plots of the relative humidity, SRH, and temperature sensitivities, ST, with respect 
to cross-section areas of the polyimide coating, Ac, for all fiber Bragg gratings. For low coating to fiber 
cross-section area ratios, the fitted curves, which correspond to the sensitivity models (eqs. (2) and (3)), 
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show an almost linear dependence of SRH and ST on Ac. The deviation from linearity is less than 4% 
for the coating thicknesses used in this work. For thicker coatings, the sensitivities eventually tend to 
saturate at values similar to those for bulk polyimide. As for the bare grating, SRH = 0 K-1, whereas ST 
= (6.31 ± 0.05)·10-6 K-1, which matches the temperature sensitivity obtained via an independent 
calibration measurement using a thermostatic water bath. Using the known thermal expansion 
coefficient of the fiber, αf, we obtain the thermo-optic coefficient ξ (table 1). Our value is different 
from the values found in literature, e.g. [8], which might be due to the dependence of ξ on wavelength, 
temperature and core doping. Given the typical mechanical properties of a silica fiber, Ef = 72 GPa 
[10] and αf = 0.05·10-5 K-1 [9], the bare fiber diameter of 127 µm and the modulus of the polyimide, Ec 
= 2.45 GPa [11], we may determine the thermal and hygroscopic expansion coefficients of the 
polyimide. By fitting eqs. (2) and (3) based on the 1-D model to the corresponding SRH and ST data, the 
expansion coefficients become D1

cβ
− = 8.3·10-5 %RH-1 and D1

cα
− = 5.5·10-5 K-1, respectively. While D1

cα
−  

is higher than the value given by the supplier (4·10-5 K-1) [11], we could not trace any other value of βc 
in the literature. With D1

cα
−  and D1

cβ
−  used in the 3-D model, we calculated up to 16% higher 

sensitivities for the sensor geometries exploited in this work. Fitting the 3-D model to the experimental 
sensitivities gives estimations of D3

cβ
− = 7.4·10-5 %RH-1 and D3

cα
− = 4.9·10-5 K-1. Table 1 shows the 

material properties determined in this work as well as reference values. We notice that the mechanical 
contribution is higher for SRH than for ST; therefore, SRH is more sensitive to coating thickness changes 
than ST. 
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Fig. 3.   Temperature and relative humidity sensitivities of fiber Bragg gratings 

with different polyimide coating thicknesses. 

In summary, we presented a new fiber optic relative humidity sensor using polyimide coated fiber 
Bragg gratings. Tests in a controlled climatic chamber show a linear, reversible and accurate sensor 
response for temperature and relative humidity ranges from 13 to 60 °C, and 10 to 90 %RH, 
respectively. We may easily compensate for the temperature cross-sensitivity using an additional bare 
fiber Bragg grating, which is not humidity sensitive. The temperature and relative humidity sensitivities 
depend on the coating thickness, with the sensor becoming more sensitive with increasing coating 
thickness. Using this interrelation we were able to determine the hygroscopic and thermal expansion 
coefficients of the polyimide coating. From a practical point of view, the sensor proposed here is easy 
to implement, and may be readily integrated within a multipoint and -parameter optical fiber Bragg 
grating sensor network thanks to its multiplexing capabilities. 

 



FBG based humidity and temperature sensor 

 6-10 

The authors would like to thank G. Tirabassi from Rotronic AG, Switzerland, who kindly agreed to 
lend us a calibrated temperature and relative humidity gauge. 

 
This Work Parameter 
1-D 3-D Reference 

Fiber (silica)   
Young’s modulus, Ef  [GPa] - 72 [10] 
Thermal exp. coeff., αf  [10-5 K-1] - 0.05 [9] 
Hygroscopic exp. coeff., βf  [%RH-1] 0 0 
Thermo-optic coeff., ξ  [10-5 K-1] 0.581 (a) 0.617 (b) [8] 
Effective refractive index, neff - 1.446 (a) 
Pockel’s coeff., p11 - 0.121 [9] 
Pockel’s coeff., p12 - 0.270 [9] 

Coating (polyimide)   
Young’s modulus, Ec  [GPa] - 2.45 [11] 
Thermal exp. coeff., αc  [10-5 K-1] 5.5 4.9 4 [11] 
Hygroscopic exp. coeff., βc  [10-5 %RH-1] 8.3 7.4 - 
 (a) wavelength: 1550 nm;  (b) wavelength: 1310 nm 

Table 1.   Fiber and coating material properties 
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Chapter 7 
 

OLCR based picometric vibration sensor 
 
 
 
 

This chapter presents the paper (in preparation) about the development of a new OLCR based 
fiber optical vibration sensor for SNOM (Scanning Near-field Optical Microscopy) applications. This 
work has been conducted in collaboration with the SNOM group of the Applied Optics Institute 
(EPFL), in particular with Dr. Omar Sqalli. 

The developed sensor exhibits remarkable potentials due to the very high sensitivity and the relative 
immunity against small air and vibrations perturbations. 

7.1 Sub-pN shear-force feed back system in air and 
liquid 

This section presents the paper currently in preparation. The authors are : 
− Philippe Giaccari, Omar Sqalli and Hans G. Limberger : Institute of Applied Optics, 

Swiss Federal Institute of Technology 
 
 

Scanning near-field optical microscopy requires a performant sensor to measure the tip-to-
sample distance. In this letter, we report on a novel shear force detection scheme for 
scanning near-field optical microscopy applications. It is based on an all fiber low-
coherence interferometer. This setup makes possible the measurements of the tip 
oscillation amplitude of less than 50 pm both in air and aqueous environment with a 
precision of 160 fm. Hz-1, thus demonstrating the ability to perform topographic 
measurements both in air and in liquids with a resolution better than 1 nm in the height 
direction. Stable feedback in air and fluids is obtained with tip-sample interaction forces 
below 1 pN. 

 
 
Scanning near-field optical microscopy (SNOM) has drawn considerable research interest in recent 

years since it allows the measurement of both the topography and the optical contrast of a sample with 
sub-wavelength resolution [7-1]. The instrument works by scanning a sub-wavelength size probe very 
close to the sample surface. The probe consists of a glass tip that can be covered with an opaque metal 
layer, with a clear aperture of sub-wavelength dimension at the tip apex [7-2]. A large majority of 
today’s probe-sample distance control mechanisms works by detecting the damping of the oscillating 
tip by lateral forces (the so called "shear force") close to the surface [7-3]. Scanning-near-field optical 
microscopes require consequently performant sensors to measure nanometric oscillations of SNOM 
tips. Different methods have been proposed in the last ten years, such as a compact near-field optical 
module based on an external cavity laser interferometer [7-4] or the tuning fork [7-5,7-6] that allows 
measuring tip oscillation amplitudes of a few picometers in air. However, working in aqueous 
environment is more critical since a huge damping of the tip vibrations occurs upon immersion of 
several microns into liquid [7-7]. For investigations in aqueous environment, a new type of liquid cell 
was proposed, in order to limit the immersion depth of the SNOM probe [7-8]. Measurements in 
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aqueous environment with the tuning fork system are possible only upon complete immersion of the 
tuning fork into liquid [7-9] with a typical vibrating tip amplitude of about 1 nm.  

In this letter, a novel force detection scheme for scanning near-field optical microscopy 
applications is presented, theoretically described and experimentally tested. It is based on an all fiber 
low-coherence interferometer to measure extremely small SNOM tips oscillation amplitudes, both in 
air and aqueous environments.  

The novel force detection scheme for scanning near-field optical microscopy applications is based 
on an all fiber low-coherence interferometer. The experimental set-up is presented in Fig. 7-1. A super 
luminescent laser diode (SLD) beam coupled into a single mode fiber (port 1) is used to illuminate a 
Michelson interferometer based on a 50/50% fiber coupler. At the end of the second interferometer 
arm (port 2), the measurement fiber, 4% of the light is reflected at the glass-air interface. 96% of the 
light is transmitted and partially reflected on the SNOM tip. The distance d between the SNOM tip 
and the end interface of the control fiber is typically 2 microns. Therefore, the tip interface and the 
fiber end face form a Fabry-Perot interferometer. A large part of the light reflected in this structure is 
coupled back into the optical fiber and is detected with a balanced detection system consisting of to 
photodiodes mounted at the other arms (port 3 and 4) of the Michelson interferometer. Monitoring 
the intensity of the interference fringes allows measuring the tip vibration amplitude. The balanced 
detection scheme improves the S/N ratio by reducing the source noise. The SLD source (SLD 56-MP 
SUPERLUM, 0.5 mW) spectrum has a full width at half maximum ∆λ  of 44 nm centered at 
λo=1319nm, leading to a coherence length of the source of about 20 microns. The low coherence of 
the SLD source has ths advantage to eliminate spurious interference signals resulting from other 
reflections in the set-up (e.g., the coupler), thus leading to an increase of the signal-to-noise ratio of 30 
dB. The SNOM-tip is mechanically excited by a piezoelectric element P2 located at x=0. The 
excitation is being supplied by a digital Lock-In Amplifier (SRS, RF Lock-In Amplifier, Model SR844). 
The measured optical interference signal is amplified by the Lock-in Amplifier and finally sent to a PC 
for storage and display. 

 
 Fig. 7-1. Schematic drawing of the experimental set-up of the shear-force system 

based on low coherence interferometry. R1 (=4%) and R2 (=96%) are the 
reflection coefficients at the end of the control fiber and the SNOM tip, C a 

50/50 optical coupler, D1 and D2 two detectors, p2 a dithering piezo. 

In order to calculate and characterize the SNOM fiber tip oscillations, we consider the vibration 
model of a beam clamped at one end and free at other [7-10]. The tip is described as a homogenous 
quartz cylinder, since the 100 microns long conical part of the tip is insignificant in comparison to 
several millimeters long cylindrical fiber. We thus consider a uniform radius R of 62.5 mm along the 
entire SNOM fiber length. The mass per unit length of the quartz is 8.6 mg/m, E the Young modulus 
is 72 GPa. For a given harmonic excitation frequency and a given fiber length, the vibrations amplitude 
at a distance from the clamped end is calculated by resolving the Euler fourth order differential 
equation [7-10]. Fig. 7-2 shows (a) the measured and (b) the calculated oscillations amplitudes at the 
middle of a 9.2 mm long quartz fiber that has a diameter of 125 mm. We observe six resonances with 

x

P2 
0
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different amplitudes that correspond to the vibration modes. The precision of the vibration amplitude 
measurement is 160 fm/Hz-1/2. The calculated resonance positions and relative amplitudes are similar 
to the experimental measurements. 
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Fig. 7-2. Measured (a) and calculated (b) vibration amplitudes at the middle 
(x=4.6mm) of a 9.2 mm long SNOM tip.vibration amplitudes at the middle 

(x=4.6mm) of a 9.2 mm long SNOM tip. 

 
Fig. 7-3. Calculated vibration amplitudes of a 9.2 mm long SNOM tip as a 

function of the position x on the tip and the oscillation amplitude. 

(a) 

(b) 
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Fig. 7-3 illustrates the tip oscillations amplitudes calculated at a position x on the tip and as a 
function of the oscillation frequency. We observe six resonances with different amplitudes that 
correspond to the vibration modes. The theoretical calculations allow correctly estimating the 
oscillations at the end of the tip by measuring the oscillation amplitude in another part of the fiber tip, 
for a given eigenmode. The above described set-up makes possible to detect a minimal vibration 
amplitude of the SNOM tip of about 5 pm for a lock-in time constant of 1 ms, and of 1 pm for a time 
constant of 30 ms. Near-field optical microcopy measurements are consequently performed with 
typical oscillation amplitudes of 50-100 pm at the tip extremity, and a signal to noise ratio always 
superior to 10. 

The vibration modes of the tip are experimentally investigated in aqueous solution. Fig. 7-4 
illustrates the vibration amplitude measurements of 6.2 mm long quartz SNOM tip in air and in water, 
for different immersion depths of the tip in water. The vibrations measurements have been carried out 
at the middle of the fiber tip for the third eigenfrequency. First, a damping of the vibrations amplitude 
as well as a shift of the resonance frequency to lower values is observed when the immersion depth 
increases. The resonance position is shifted from 46.8 kHz to 44.5 kHz for a 2 mm immersion depth. 
Second, the Q factor decreases from 100 to 80 but remains always sufficiently high and makes possible 
performing SNOM measurements in water, even for immersion depth of 2 mm. The same behavior is 
observed for the other resonances showing that the vibration modes are preserved in water. 
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Fig. 7-4. Damping of the L=6.2  mm long tip oscillations, as a function of the 
oscillation frequency, for several tip immersion depths in water. The measurement 

is performed at x=3.1 mm, at the middle of the oscillating SNOM tip. 
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Fig. 7-5. Two topographic images of a 21 nm deep chromium on glass grating 
with a period of 372 nm performed with the same  tip on the same sample in air 

then in water. 
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The previously described interferometric system is mounted in the SNOM set-up. A z-piezo 
vertically moves the tip, whereas an x-y piezo horizontally moves the sample. Fig. 7-5 shows two 
topographic slices of chromium on glass grating with a period of 372 nm performed with the same tip, 
in air and in water. The tip vibration amplitude at the tip extremity of 50 pm during the scan in both 
cases, with a signal-to-noise ratio was of about 50. The similarity of the images proves the reliability of 
the technique to perform accurate measurements both in air and aqueous environment with a height 
precision better than 1 nm. Moreover, the topographical contrast is nearly the same in air and in water. 
The lateral resolution is given by the probe shape. 

To gain a better qualitative and quantitative understanding of the interaction force between the tip 
and the sample, a simple model called the effective mass harmonic model and described in reference 
[7-5,7-8] is used. Again, the SNOM fiber tip is considered as an uniform cylinder with a static spring 
constant kspring. The tip-sample interaction shear-force Fint is obtained by measuring the free Ul and 
attenuated Uint vibration amplitude, at a specific resonance frequency with a precise Q quality 
factor: int int( ) / 3= −spring lF k U U Q . The SNOM tip described in Fig. 7-3 has a length L of 9.2 

mm, a spring constant kspring=3EI/L3 of 3 N/m (fundamental eigenfrequency), where I=πR4/4 is the 
inertia mement of the tip, a working free oscillation amplitude Ul at 2 kHz of about 50 pm, a Q factor 
of about 80. By choosing Uint equal to 0.9*Ul, the measured shear force Fint is about 0.2 pN. Note that 
an increase of the probe length leads to a decrease of the probe static spring constant, and therefore to 
the detection of a smaller shear force for the same vibration amplitude. Higher eigenfrequencies are 
usually characterized by a higher Q factor, that allows measuring smaller forces, but also a higher 
spring constant of the tip, since the nodes reduce the effective oscillating length of the tip. 

  In conclusion, a new low coherent system has been implemented in force detection schemes for 
scanning near-field optical microscopy applications. It allows characterizing the SNOM-tip oscillation 
modes and amplitudes on the one hand, and, on the other hand, performing topographical 
measurements with a high precision both in dry and aqueous environments using the shear-force 
technique. The SNOM tip vibration amplitudes are typically 50-100 pm at the tip extremity during the 
scan. Topography measurements with a precision better than 1 nm in the z direction were performed 
without any control of the ambient temperature and humidity.  
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Chapter 8 
 

Conclusions and future work 
 
 
 
 
 

8.1 Conclusions 
The main parameter that describes a fiber Bragg grating is the refractive index distribution that can 

be expressed with three independent functions, the refractive index modulation amplitude, the average 
effective refractive index change and the grating period. A FBG is also spatially described by its 
complex coupling coefficient, which mixes the period chirp and the average refractive index chirp in a 
single phase function. The variations of these distributions can lead to various spectral and impulse 
responses. 

A FBG can be described in three domains : 
− space (z) domain with the refractive index distribution or the complex coupling 

coefficient function 
− frequency (ν) domain with the reflection and transmission responses (complex) 
− time (τ) domain with the complex impulse response (in reflection or transmission) 

The T-matrix method has been used to calculate the complex spectral response r(ν) when the 
complex coupling coefficient distribution q(z) is known. Inversely, q(z) has been retrieved from r(ν) by 
the layer-peeling method. A modified T-matrix and the layer-peeling methods has been presented that 
take into account homogeneous distributed loss inside the grating. 

For a wavelength bandwidth where the fiber dispersion is negligible, the complex OLCR response 
of a FBG corresponds to the convolution of the complex impulse response of the grating with the 
degree of coherence of the light source. A new OLCR set-up was developed that simultaneously 
measure the amplitude and the phase response of FBGs. The main results concerns the time-
multiplexing OLCR set-up that exhibits a noise level of −120 dB for optical fiber devices (limited by 
the Rayleigh back-scattering) and a large range of allowed OPLD resolution due to the phase 
difference measurement principle. The high dynamic range of the OLCR opens the possibility to 
measure very weak gratings. The time-multiplexing OLCR set-up also offers the possibility to directly 
measure the complex spectral response of FBGs. 

The complex coupling coefficient is obtained by application of the layer-peeling method. In order 
to distinguish the period chirp from the DC refractive index chirp, at least two reconstructions at 
different temperatures or axial strains are required. 

The reconstruction process by layer-peeling has been simulated, while systematically varying the 
reconstruction parameters. It was shown that the required dynamic range of the starting spectral or 
impulse response is not fundamental and that the number of spectral points has to exceed 10 times the 
number of layers. Observation of the reconstruction of noisy data has shown that the influence of 
noise is less important for the reconstruction starting from the impulse response. Finally, the 
reconstruction process by layer-peeling is less accurate when applied to gratings that exhibit a spectral 
bandwidth saturation in reflection. Measurements from both sides and inducing a temperature or an 
axial strain ramp can improve the reconstruction of these gratings. 
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This reconstruction procedure was applied on homogeneous and non-homogeneous FBGs. The 
main results are an axial resolution of 20 µm and a maximal error of 5 % calculated by comparison 
between the reconstructions conducted from both side of the FBG. The reconstruction of a FBG that 
exhibits loss has also been performed using the modified layer-peeling method. The preliminary results 
show that a good matching between the reconstructions from both sides can be obtained with minimal 
remaining coupling coefficient amplitude behind the grating. 

A fiber Bragg grating has been embedded in an epoxy sample and a non-homogeneous strain field 
has been induced in the sample by application of an axial stress. The results of the experiment are fairly 
good as the strain distribution is obtained along the grating (except for a little part less than 1 mm at 
each grating sides) and the global behavior is more or less corroborated by a finite element analysis. 
Nevertheless, this experiment needs to be performed a second time, as the applied loads were very 
high, inducing not-wanted plastic deformations of the epoxy sample. 

An analytical model has been developed that simulates the diametric loading of fiber Bragg gratings. 
The behavior of FBG's written in low-birefringent fibers is completely described with this model. For 
gratings written in polarization maintaining fibers, the model completely explain the observed non-
linear behavior (rotation of the fiber principal axis) but failed to explain the observed anisotropy 
between the transverse strain sensitivity of the fast and slow axis. 

It has been shown that FBGs coated with polyimide show sensitivities to temperature and relative 
humidity change. A new fiber optic relative humidity sensor using polyimide coated fiber Bragg 
gratings has been presented. Tests in a controlled climatic chamber have shown a linear, reversible and 
accurate sensor response for temperature and relative humidity ranges from 13 to 60 °C, and 10 to 90 
%RH, respectively. The dependence of this sensor to the coating thickness has been experimentally 
and mathematically studied. 

  A new low coherent system has been implemented in force detection schemes for scanning near-
field optical microscopy applications. It allows characterizing the SNOM-tip oscillation modes and 
amplitudes on the one hand, and, on the other hand, performing topographical measurements with a 
high precision both in dry and aqueous environments using the shear-force technique. 

8.2 Future work 
More experiments needs to be performed in non-homogenous strain fields to completely validate 

the preliminary experiments. Further experiments are also required to study all the potentials of the 
evolution of the layer-peeling method for gratings that exhibit loss. It could even be possible to 
retrieve the local loss parameters by combining the reflection and transmission responses of the grating 
(in this case, the OCLR set-up has to be configured to measure the complex impulse response in 
transmission).  

Another important perspective is to reconstruct the grating parameters for very strong FBGs. We 
have proposed a method where the grating is placed in a non-homogeneous axial strain field (or 
temperature field) and this method needs to be tested. 

Important potentials of the presented reconstruction procedure exist, for example for controlling 
the FBG writing process or in the field of distributed sensing. 
 



 
 
 
 

Appendix A 
 

Slab waveguide and circular core fibe 
 
 
 
 
 

This annex presents the basics of slab waveguides and optical fibers. It is based on the reference 
book of L.B. Jeunhomme, “Single-mode fiber optics”, Second edition, Chapter 1 “Basic theory”, 
Marcel Dekker, Inc (New York, Basel), 1990. 

A.1 Slab waveguide 
A.1.1 Maxwell’s equations and solutions 
We consider a symmetric slab waveguide of width 2a, core refractive index n2 and cladding 

refractive index n1 (Fig. A-1). The propagation direction is z, the direction orthogonal to the guide is x. 

 
Fig. A-1 Slab waveguide geometry 

The Maxwell’s equations in dielectric materials lead to two self-consistent types of solutions. The 
first involves only Ey, Hx and Hz (transverse electric TE) and the second Hy, Ex and Ey (transverse 
magnetic TM), where E and H are the electric and magnetic fields. For the TE case, the Maxwell’s 
equations reduce to 

( )
2

2 2 2
2
y

j y

E
k n E

x
β

∂
= − −

∂
 (A-1) 

where β is the propagation constant (β =ω/c = 2π/λ). A similar equation can be found for TM case 
(we limit further the study to the TE case only). The field variation along the x-axis will exhibit 
sinusoidal behavior where k2nj2 > β2 (oscillating field) and exponential behavior elsewhere (evanescent 
field). Guided modes have propagation constant that fulfill the following relation 

2 1kn knβ≤ ≤  (A-2) 

For β greater than kn1 the field is evanescent everywhere and thus, carries no energy. For β smaller 
than kn2, the field is oscillating everywhere and radiates laterally the energy (radiative modes). 

We define a transverse propagation constant u/a and a transverse decay constant v/a defined as 
2 2 2 2 2 2 2 2 2

1 2/ /k n u a k n v aβ = − = +  (A-3) 
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where u and v are chosen positive. We define also a dimensionless parameter V called the normalized 
frequency 

( ) ( )22 2 2 2 2
1 2V u v ak n n= + = −  (A-4) 

Two kind of solutions are found from the field continuity condition at |x| = a 
− Even TE modes 
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− Odd TE modes 
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( )/ tanv u u= −  

(A-6) 

The continuity conditions v = u⋅tan(u) or v = −u/tan(u) and the condition u2 + v2 = V2 imply that 
the structure can only support discrete modes. The fundamental mode TE0 is always present and 
unique as long as the V < π/2. The first odd mode TE0 appears for V = π/2. The third mode (even 
TE1) appear at V = π and so on. Each time the parameter V reaches a multiple of π/2, a new mode 
reaches its cutoff (for which v = 0 and β = kn2). 

A.1.2 Fundamental mode propagation constant and dispersion 
We assume that there is no material dispersion (n1 and n2 are frequency independent). At zero 

frequency we have β = kn2. When the optical frequency increases, V increases proportionally and u 
tends toward an asymptotic value of π/2 (β tends toward kn1). In many case the waveguide is 
illuminated by a small bandwidth light centered at ω0. In this case, the propagation constant can be 
developed at the second order 

( ) ( ) ( )2' ''
0 0 0 0 0 / 2β ω β ω ω β ω ω β≅ + − + −  (A-7) 

where β0 = β(ω),  β0’ = dβ/dω and β0’’ = d2β/dω2 evaluated at ω0. The term β0’ represents the group 
time delay per unit length and the term –β0’’ the chromatic dispersion due to the waveguide. 

A.2 Optical Fiber Waveguide 
A.2.1 Comparison with a slab waveguide 
In circular core fibers, the general behavior of the electromagnetic field and of the modes is 

qualitatively similar to that of the slab waveguide. However, the presence of a dielectric discontinuity 
on a surface involving both the x and y variables has two consequences 

− The modes label will contain two indices instead of one, the first index being related to 
the radial propagation constant and the second index to the azimutal periodicity of the 
field 

− It is no longer possible to assume that there is no variation of fields along the y-axis, 
and we will thus find that some eigenmodes (especially the fundamental one) are not 
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purely transversely polarized but rather have a small longitudinal component for both 
the electric and magnetic fields. These modes are called HE and EH modes 

A.2.2 Maxwell’s equations 
We consider a circular core fiber (Fig. A-2). 

 
Fig. A-2 Circular core fiber geometry 

We define the relative refractive index difference ∆ as 

1 2

2

n n
n
−

∆ =  (A-8) 

In practice, ∆ is smaller than 1 %, allowing the use of the scalar wave approximation (errors below 
0.1 % are found for the mode characteristics) where in cylindrical coordinates the Maxwell’s equations 
reduce to 
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 (A-9) 

The normalized frequency V can be expressed in terms of ∆ 

2 2
1 2 2

2 2aV n n aknπ
λ

= − ≅ ∆  (A-10) 

A.2.3 Fundamental mode HE11 
For V < 2.405 the fiber only support the fundamental mode HE11 (for slab waveguides the 

condition value was π/2). There are two HE11 modes, one polarized along the x-axis and the second 
one along y-axis, but they are degenerated due to the circular symmetry of the fiber. In this case, the 
fiber is called “single-mode”. The cutoff wavelength is defined as 

/ 2.405c Vλ λ=  (A-11) 

The field distribution of the HE11 mode is given by (either Ex of Ey can be taken as 0) 
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(A-12) 
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where the first of (sin(ϕ),cos(ϕ)) for Ez and of (cos(ϕ),sin(ϕ)) for Hz holds if Ex = 0, and the second 
holds if Ey = 0. Z0 is the vacuum impedance, J0,1 are the Bessel functions of order 0 and 1, K0,1 the 
modified Bessel functions. The continuity equation is given by 

( )
( )

( )
( )

1 1

0 0

J u K v
u v
J u K v

=  (A-13) 

The longitudinal components of the fields are on the order of u/kan with respect to the transverse 
components. Using (A-4) and (A-10) and the fact that ∆ is smaller than 1 %, we can consider the mode 
as transversely polarized with a linear polarization. This leads to the denomination of the LP01 mode. 

A useful approximation for v(V) is given by 

( )v 1.1428 0.9960 2.7484 / 0.9960cV λ λ≅ ⋅ − = ⋅ −  (A-14) 

The corresponding u value is obtained from (A-4). The relative error in u compared to the exact 
solution is less than 0.1 % for 1.5 < V < 2.5 and increase to 1 % for 1 < V < 3. 

The propagation constant β is also defined as in (A-3) and we define an effective refractive index of 
the mode, neff, as 

( )
( )22 2 2 2

2 2
1/ 1.1428 0.9960effn k n V
ak

β= = + ⋅ −  (A-15) 

We define the normalized propagation constant b, varying between 0 and 1 (only dependent of V) 

( )
2 22 2 2

2
2 2 2 2
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v 1k n ub V
k n k n V V
β −    = = = −   −    

 (A-16) 

Using the fact that ∆ is small, we can write 

( )2 1kn bβ = + ∆  

( ) ( ) ( )( )2 21.1428 0.9960 / 1.1428 0.4141 / cb V V λ λ≅ − = − ⋅  
(A-17) 

The error is less than 0.2 % for V between 1.5 and 2.5 (less than 2 % for V between 1 and 3). 
The group delay τ, characterizes the propagation delay time per unit length of a modulated signal 

transmitted by the optical wave. It is obtained as 

1d d
d c dk

β βτ
ω

= =  (A-18) 

where c is the vacuum light speed. Neglecting the difference in the dispersive properties between the 
core and the cladding, the time delay can be expressed as 

( )( )'2 1N Vb
c

τ = + ∆  (A-19) 

where N2 = d(kn2)/dk is the group index of refraction of the material with refractive index n2, and 
(Vb)’ = d(Vb)/dV well approximated by 

( ) ( )' 21.3060 0.9960 /Vb V≅ −  (A-20) 

The error is less than 1 % for 1.6 < V < 2.4 (less than 4 % for 1 < V < 3). 
The dispersion description in fibers is more difficult as there is a mixing between the material 

dispersion (variation of N2 and ∆ with λ) and the waveguide dispersion (variations of b and (Vb)’ with 
λ). 
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Modified phase mask technique description 
 
 
 
 
 

B.1 Introduction 
The schematic view of the writing set-up with the modified phase mask technique is presented in 

Fig. B-1. The cylindrical concave and convex lens should not be confounded with the lenses used for 
the beam reducer (aligned in the orthogonal direction). The parallel laser beam is 2h0 wide before 
entering the convex lens. The focal length of the convex lens is fx and the one for the concave lens is 
fv. The distance between the lenses is d1, the distance between the concave lens and the phase mask 
output is d2, and the distance between the phase mask surface and the center of the fiber is d3. 

 
Fig. B-1 Principal parameters of the modified phase mask technique set-up 

B.2 Ray optic concatenation of lenses 

 
Fig. B-2 Single lens in ray optics approximation 

For a single lens (Fig. B-2), the distance s is given by 
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r fs
r f

⋅
=

−
    or    1 1 1

f r s
= +  (B-1) 

where f is the focal length (imaging equation). For a parallel entering light (r = ∞), s = f. Negative 
distance are possible for virtual converging points. 

                           
Fig. B-3 Two cascaded lens in ray optics approximation (left) and screen placed 

after the last lens (right) 

For two cascaded lenses (Fig. B-3), we have the following relations 

1m m mr d s −= −  

m m
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m m

r fs
r f

=
−
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m
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rL L
s−

−

=  

(B-2) 

For the case with the screen, the spot size L is given by  

m
m

m

d sL L
s
−

=  (B-3) 

We note that in the case presented in Fig. B-3, the parameters sm, rm and fm are negative. It is 
possible to use these equations in a recursive way for an arbitrary number of lenses. 

B.3 Modified phase mask technique 
From Fig. B-1 we see that r0 = ∞, s0 = fx and L0 = 2h0. We then obtain 

1 1 xr d f= −  
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(B-4) 

The distances L and L+∆L are given by 

( )1 2 1 1/L h d s s= −  

( )1 2 3 1 1/L L h d d s s+ ∆ = + −  
(B-5) 

The relative Bragg wavelength change λb/λb,0 and the absolute Bragg wavelength shift ∆λb 
correspond to 
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(B-6) 

where he magnification is close to 1 and then the |.| is omitted. We have realized a set-up with the 
following parameters : 

− fx  = 100 mm 
− fv = -20 mm 
− d1 = 32 mm 
− d2 = 13 mm 

We observe that for these parameters, the beam width is identical at the phase mask location to the 
beam size at the entrance (L = h0). For an initial Bragg wavelength of 1550 nm, the parameter α has a 
value of 24.2 m-1. For the fiber touching the phase mask, the distance d3 = 62.5 µm (fiber radius) and 
then the Bragg wavelength shift is 2.35 nm as can be seen in Fig. B-4. 

 
Fig. B-4 Wavelength shift for the realized set-up and a phase mask for FBG 

writing at 1550 nm 



 



 
 
 
 

Appendix C 
 

Coupled-mode description of FBG 
 
 
 
 
 

This appendix is based on the work of J. Skaar in his thesis work, Chapter 2 “Fiber Bragg grating 
model” [C-1].  

C.1 Scalar wave approximation 
The fiber is assumed lossless, single mode and weakly guiding (small refractive index difference 

between the claddings ncladding and the fiber core ncore). The electromagnetic field is considered 
transverse to the fiber axis z and that the polarization state is conserved along the propagation (x-
polarized). These hypotheses reduce the field description to the scalar wave equation [C-2]. A forward 
propagating wave with positive propagation constant β and pulsation ω has a phase term ei(βz−ωt). 

The fiber Bragg grating is treated as a perturbation of the fiber waveguide. The refractive index 
distribution of the fiber prior to the grating inscription is given by ( ),n x y  and the perturbed refractive 
index n(x,y,z) is z-dependant. The total electric field Ex is written as a superposition of the forward and 
backward propagating modes (b+ and b− respectively) 

( ) ( ) ( ) ( ) ( ), , , ,xE x y z b z x y b z x yψ ψ+ −= +  (C-1) 

The coefficients b± contain all the z-dependence of the modes when ψ describes the transverse 
dependence. The function ψ satisfies the scalar wave equation for the unperturbed fiber 

( )
2 2

2 2 2
2 2 , 0k n x y
x y

β ψ
 ∂ ∂

+ + − = ∂ ∂ 
 (C-2) 

where k = ω/c0 is the vacuum wavenumber (c0 is the vacuum light speed) and β = neffk (neff is the 
mode effective refractive index). The total electric field satisfies the scalar wave equation for the 
perturbed waveguide 

( )
2 2 2
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2 2 2 , , 0xk n x y z E
x y z

 ∂ ∂ ∂
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 (C-3) 

From equations (C-1), (C-2) and (C-3) the following equation is obtained 

( ) ( )( )( )
2

2 2 2 2
2 0d b b k n n b b

dz
ψ β ψ+ − + −+ + + − + =  (C-4) 

This equation is multiplied by ψ and integrated over the fiber section and then 

( ) ( )( )( )
2

2
2 2 0core
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C.2 Coupled mode equations 
The equation (C-5) can be separated in a set of two first order differential equations 

( )db i D b iDb
dz

β+
+ −− + =  

( )db i D b iDb
dz

β−
− ++ + = −  

(C-6) 

In absence of the grating, the modes propagate without affecting each other. Otherwise, the modes 
will couple to each other through the quantity D(z). The grating index perturbation can be expressed 
as 

( ) ( )( ) ( )2 2 cos 2 /ac d dcn n z z z zε π θ ε− = ∆ Λ + + ∆  (C-7) 

where the design period Λd is chosen in order to guaranty a slowly varying phase function θ(z). The 
functions ∆εac and ∆εdc are real and slowly varying function much smaller than n2core. The quantity D(z) 
can also be expressed as a quasi-sinusoidal function 

( ) ( ) ( ) ( )*2 2exp exp
d d

i z i zD z z z zπ πκ κ σ
   

= + − +   Λ Λ   
 (C-8) 

where κ(z) is complex, slowly varying with z and σ(z) is real, also slowly varying and represents the 
contribution of ∆εdc. The forward and backward components b± are written as 

( ) ( ) ( )( )0
exp exp ' '
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d

i zb z u z i z dzπ σ+

 
=  Λ 

∫  
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i zb z v z i z dzπ σ−

 
= − − Λ 

∫  
(C-9) 

The new variables u and v can be treated as the fields themselves once the reference planes have 
been fixed since they only differ from b± by constant, frequency independent phase factors. Starting 
from (eq. (C-6), using equations (C-8) and (C-9) and neglecting the rapidly oscillating terms that 
contribute little to the energy coupling we obtain the coupled-mode equations 

( )du i u q z v
dz

δ= +  

( )*dv i v q z u
dz

δ= − +  
(C-10) 

where δ = β−π/Λd is called the wavenumber detuning and where q(z) is called the coupling coefficient 
and is defined as 

( ) ( ) ( )( )0
exp 2 ' '

z
q z i z i z dzκ σ= − ∫  (C-11) 

We note that the function u, v and q are slowly varying with z compared to the period Λd because β 
is close to π/Λd when the wavelength is close to the Bragg wavelength (2neffΛd). 
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C.3 Physical interpretation 
We assume that the refractive index perturbation of the grating is homogeneous and restricted to 

the fiber core (ncladding = n ) and then the D parameter is given by 

( ) ( )2 2

2 core

kD z n n
n

η= − ⋅  (C-12) 

where η is the fraction of the modal power that is contained in the fiber core. From equations (C-7), 
(C-8) and (C-12) we see that 2|κ| = ηk∆εac/2ncore, θ = Arg(κ) and σ = ηk∆εdc/2ncore. The refractive 
index change is small and then ∆ε = ∆(n2core) = 2ncore∆n and using (eq. (C-11) we obtain 

( ) ( ) /acq z n zηπ λ= ⋅∆  

( )( ) ( ) ( )
0

/ 2 2 ' '
z

dcArg q z z k n z dzπ θ η= + − ∆∫  
(C-13) 

Since the index perturbation is small, equation (C-7) can be written 

( ) ( )( ) ( )cos 2 /ac d dcn n n z z z n zπ θ− = ∆ Λ + + ∆  (C-14) 

where ∆nac and ∆ndc are the “ac” and “dc” index change, respectively. The following approximation 
has been used 

( )2 2 2 coren n n n n− ≅ −  (C-15) 

The modulus of the coupling coefficient q is proportional to the refractive index modulation 
amplitude. The coupling coefficient phase corresponds to the excess optical phase of the grating; the 
term θ(z) is the spatial grating phase and the integral term gives the optical modification to the spatial 
phase due to the dc index change. 

The derivative of the coupling coefficient phase gives the extra spatial frequency of the grating in 
addition to 2π/Λd 

( )( ) ( )/ / 2 dcdArg q z dz d dz k n zθ η= − ∆  (C-16) 

and then an effective grating period can be defined for wavelength close to the Bragg grating as 

( ) ( )
1

1
2

dcd
eff d

eff

n zdz
dz n
θ η

π

−
 ∆Λ

Λ = Λ + ⋅ −  
 

 (C-17) 
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Appendix D 
 

Fourier Transforms, Gaussian Function and 
FFT requirements for complex impulse 

response calculation 
 
 
 
 
 

D.1 Fourier Transforms 
D.1.1 Definition 
Several notations and conventions are in use for Fourier transforms. In this work, the following 

relations are used [D-1] 

( )( ) ( ) ( ) 2iTF f x F f x e dπξαξ α
∞

−

−∞

= = ∫  (D-1) 

( )( ) ( ) ( )1 2i xTF F f x F e dπβξ ξ β
∞

−

−∞

= = ∫  (D-2) 

where TF and TF-1 are the Fourier transform and inverse Fourier transform respectively. 

D.1.2 Properties 
Some fundamental properties are summarized hereafter 

( )( ) ( )02
0

i xTF f x x e Fπ ξ ξ−− =  (D-3) 

( )xTF f b F b
b

ξ   =    
 (D-4) 

D.2 Gaussian Function 
D.2.1 Definition 
The Gaussian function Gaus is defined as 

2
0

0
x x
bx xGaus e

b

π − −  
 −  = 

 
 (D-5) 
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This function centered at x0 has a height of unity and its area is equal to |b|. 

D.2.2 Properties 
Gaussian functions are often used for distributions like spectral density of a light beam. In this case, 

an important parameter is the distribution bandwidth found at mid-height ∆xFWHM, where FWHM 
means full width at half maximum. It is interesting to connect this value of ∆xFWHM with the Gaussian 
parameters b and x0 and to find the corresponding points x1,2 where the Gaussian is 0.5 (half the 
maximum) 

( )2 ln 2
FWHMxb π∆

=  (D-6) 

( )
1,2 0

ln 2
x x b

π
= ±  (D-7) 

The Fourier transform of a Gaussian is also a Gaussian 

( )( ) ( )TF Gaus x Gaus ξ=  (D-8) 

( )020 i xx xTF Gaus b e Gaus b
b

π ξ ξ− −   =  
  

 (D-9) 

where (D-9) is a consequence of equations (D-3) and (D-4). The Fourier transform is complex with a 
maximum amplitude of |b| at ξ=0. The position ξ1,2 where the Fourier transform amplitude reach the 
half of its maximum and the FWHM ∆ξFWHM are given by 

( ) ( )
1,2

ln 2 2ln 21

FWHMb x
ξ

π π
= ± = ±

∆
 (D-10) 

( ) ( )ln 2 4ln 22 1
FWHM

FWHMb x
ξ

π π
∆ = =

∆
 (D-11) 

D.3 Matlab FFT and Gaussian example 
D.3.1 Theory 
The Matlab fast Fourier transform <fft> of a linearly discrete function y(fn) of the frequency fn 

with steps of δf, is a linearly discrete function Y(tn) of the time tn (impulse response) with steps of δt, n 
∈ [1..N]. With the inverse Fourier transform <ifft>, y(fn) is calculated from Y(tn). Optimal calculation 
is found when N=2m, m integer. To obtain a linear scale from negative to positive positions, the 
Matlab function <fftshift> has to be applied to the discrete Fourier transform, i.e. <fftshift(fft)> or 
<fftshift(ifft)>. The definition of fn and tn are 

fftshift(fft) : [ ] 1 1, 1,..., 1,0,1,..., 1,
2 2 2 2n
N N N Nt

N fδ
 = − − + − − − ⋅  

 (D-12) 

fftshift(ifft) : [ ] 1 1, 1,..., 1,0,1,..., 1,
2 2 2 2n
N N N Nf

N tδ
 = − − + − − − ⋅  

 (D-13) 

The relation between δf and δt are 
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1 1t and f
N f N t

δ δ
δ δ

= =
⋅ ⋅

 (D-14) 

If fn (or tn) is not symmetric across zero, a constant phase shift factor is added to the Fourier or 
inverse Fourier transform. To increase the Fourier transform resolution, padding with zeros is possible 
directly with Matlab by calling the function with a size parameter, i.e. <fft(y(tn),M)>. In this case, the 
number M replace the parameter N in the equations (D-12), (D-14) and (D-13). It should be 
remembered that the maximal frequency that can be found by iFFT is determined by δt as fN=1/δt. 

D.3.2 Example 
A SLD light source with Gaussian shape is chosen with ∆λFWHM = 40 nm and centered at 

λc = 1318 nm. The SLD intensity I(ν) is 

( )
2

c
bcI Gaus e

b

ν νπν νν
− −  

 − = = 
 

 (D-15) 

The relations between νc, b, ∆λ and λc are 

0
c

c

cν
λ

=  (D-16) 

2
0

02 2

2 1 1
c c

c cλ λν
λ λ λ

 ∆ ∆
∆ = + − ≅  ∆  

 (D-17) 

( )2 ln 2
b ν π∆
=  (D-18) 

where c0 is the light speed in vacuum (2.9979⋅108 m/s). The discrete intensity between 1210 and 
1410 nm with 5000 points is presented in Fig. D-1. 

    
Fig. D-1 : Gaussian light source intensity in linear (left) and dB scale (right) 

The Fourier transform of the light spectrum, which is the impulse response h(τ) of the light source 
and the pulse width ∆τFWHM are given by 

( ) ( )( ) ( ) ( )20 02 2bi ih TF I b e Gaus b b e eπ τπν τ πν ττ ν τ −− −= = =  (D-19) 

( ) ( ) 2

0

ln 2 4ln 22 c
FWHM

FWHMb c
λ

τ
π λ

∆ = ≅
∆

 (D-20) 
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The pulse width ∆τFWHM is found to be 38.3µm/c0. The calculated impulse response amplitude is 
presented in Fig. D-2. The impulse axis is the optical path difference between –120 and 120 µm 
corresponding to the travel distance in vacuum for the corresponding impulse time. 

    
Fig. D-2 : Impulse response amplitude of the Gaussian light source intensity in 

linear scale (left) and in dB scale (right) 

The impulse response outside the ±95 µm is no more the expected Gaussian function due to 
roundings in the calculation process. 

D.4 References 
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Appendix E 
 

Polarization rotation effect on OLCR 
measurements 

 
 
 
 
 

E.1 OLCR set-up 
Fig. E-1 presents a simplified OLCR set-up where the propagation direction in the reference arm is 

denoted z and a polarization controller is placed in the test arm. 

 
Fig. E-1 Simplified OLCR set-up : low coherent light source (L), coupler 

(CPL), converging lens (CL), mirror (MIR), polarization controller (POLA) 
and detector (D) 

E.2 Interference intensity 
To explain the polarization effects, the scalar description of the signal amplitudes is not adequate as 

it assume a single stationary polarization state that cannot be modified by the travel in the 
interferometer. We assume a stationary non-polarized light. For convenience, we define two 
orthogonal directions x and y which form with z a complete orthogonal reference system. The 
propagating light in the all-fiber interferometer is assumed to be a transverse electromagnetic (TEM) 
plane wave orthogonal to the traveling direction z. A vectorial amplitude signal E is then written in 
terms of its projection Ex and Ey on the directions x and y respectively 

( ) ( )
( ) ( ) ( ) Tx

x y
y

E t
E t E t E t

E t
 

 = =   
 

 (E-1) 

If θ is the polarization angle difference between the reference and the test light arriving at the 
detector, the signal amplitudes Er and Et are given by 
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( ) ( ) ( ) ( ) ( )
( ) ( )

( )
( )

cos sin
sin cos

x
r

y

E t
E t M E t

E t
τθ θ

α θ τ α
τθ θ

 + − 
= ⋅ ⋅ + =    +   

 

( ) ( ) ( )
( )

x
r

y

E t
E t E t

E t
β β

 
= =  

 
 

(E-2) 

where β includes the complete reflection response of the test sample. The signal amplitude Ed and 
intensity Id at the detector are given by 

( ) ( ) ( ) ( )
( )

dx
d r t

dy

E t
E t E t E t

E t
 

= + =  
 

 

22
d dx dy dx dyI E E I I= + = +  

(E-3) 

After some algebric manipulations we obtain 

 ( ) ( )( )222 2
d x yI E Eτ α β= + +  

 ( ) ( ) ( ) ( ) ( )( )* *2 cos Re x x y yE t E t E t E tαβ θ τ τ+ ⋅ ⋅ + + +  
(E-4) 

The spectral distribution is identical for all polarizations (same complex degree of coherence γ) and 
for non-polarized light, both orthogonal components have half the total source intensity Is. This allows 
a reformulation of Id 

( )
( ) ( )

( ) ( )
*

x x
x y

s

E t E t
I

τ
γ τ γ τ γ τ

+
= = =  

22

2
s

x x y
II E E= = =  

( ) ( ) ( ) ( )( )2 2 2 cos Red sI Iτ α β αβ θ γ τ = + + ⋅ 
 

(E-5) 

For θ = 0, the intensity Id corresponds to the case where the polarization effects are neglected and 
the interferences are not perturbed. For other values of θ, the cosinus factor reduce the fringe visibility 
and in the worst case for θ = π/2, no interference at all will be detected. 
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